Abstract:
A semiconductor device includes a pair of line patterns disposed on a substrate. A contact plug is disposed between the pair of line patterns and an air gap is disposed between the contact plug and the line patterns. A landing pad extends from a top end of the contact plug to cover a first part of the air gap and an insulating layer is disposed on a second part of the air gap, which is not covered by the landing pad.
Abstract:
A semiconductor device includes bit line structures on a substrate, the bit line structures extending along a first direction and being spaced apart from each other along a second direction perpendicular to the first direction, contact plugs spaced apart from each other along the first direction and being on active regions of the substrate between adjacent bit line structures, a linear spacer on each longitudinal sidewall of a bit line structure, landing pads on the contact plugs, respectively, the landing pads being electrically connected to the contact plugs, respectively, and landing pads that are adjacent to each other along the first direction being offset with respect to each other along the second direction, as viewed in a top view, a conductive pad between each of the contact plugs and a corresponding active region, a vertical axes of the conductive pad and corresponding active region being horizontally offset.
Abstract:
A semiconductor device is fabricated by forming first holes arranged along a first direction on an etch-target layer, forming dielectric patterns in the first holes, conformally forming a barrier layer on the dielectric patterns, forming a sacrificial layer on the barrier layer to define a first void, partially removing the sacrificial layer to expose the first void, anisotropically etching the barrier layer to form second holes below the first void, and etching portions of the etch-target layer located below the first and second holes to form contact holes. The first void may be formed on a first gap region confined by at least three of the dielectric patterns disposed adjacent to each other, and the sacrificial layer may include a material having a low conformality.
Abstract:
A method of forming a semiconductor device includes first preliminary holes over an etch target, the first preliminary holes arranged as a plurality of rows in a first direction, forming dielectric patterns each filling one of the first preliminary holes, sequentially forming a barrier layer and a sacrificial layer on the dielectric patterns, forming etch control patterns between the dielectric patterns, forming second preliminary holes by etching the sacrificial layer, each of the second preliminary holes being in a region defined by at least three dielectric patterns adjacent to each other, and etching the etch target layer corresponding to positions of the first and second preliminary holes to form contact holes.