Abstract:
An electronic device according to an embodiment of the present invention comprises: a housing that comprises a first surface which faces a first direction and a second surface which faces a second direction opposite to the first direction, and that comprises a first transparent plate which forms at least a portion of the first surface of the housing; a display that is disposed between the first transparent plate and the second face of the housing, and comprises a second transparent plate which faces the first direction, and a third transparent plate which faces the second direction; a first electrode, a second electrode, a third electrode, and a fourth electrode that are disposed between the second transparent plate and the third transparent plate; and a control circuit that is electrically connected to the first electrode, the second electrode, the third electrode, and the fourth electrode, wherein the control circuit may be configured to detect the position of touch input with respect to the first transparent plate by using the first electrode, to detect the intensity of the touch input by using the second electrode, and to display visual information on at least a portion of the display by using the third electrode and the fourth electrode. In addition, an electronic device comprising a pressure sensor according to various embodiments of the present invention can provide a slim electronic device with reduced manufacturing costs by utilizing an integrated structure with a touch sensor and/or a fingerprint sensor and by disposing the touch sensor including the pressure sensor, and other sensors between various structures inside the display.
Abstract:
A method for preventing a touch misrecognition includes counting a total number of touch detection values of a touch panel which is greater than or equal to a first threshold value; comparing the total number of touch detection values with a second threshold value; and when the total number of the touch detection values is greater than or equal to the second threshold value, determining that bending of the touch panel has occurred.
Abstract:
A bendable user terminal device provided with a flexible display controls the flexible display to display information on a first area while the user terminal device is maintained in a bent state based on a detected bending state of the user terminal device, and, in response to the user terminal device changing from the bent state to an unbent state, controls the flexible display not to display the information on the first area.
Abstract:
An apparatus and method for improving input position and pressure detection in a pressure detection touch screen. The method includes detecting a touch input on a touch screen; generating compensated pressure information for compensating for inaccurate pressure information detected from the touch input, when the touch input is detected in an outer area on the touch screen; and generating compensated location information using the compensated pressure information.
Abstract:
An apparatus and method for improving input position and pressure detection in a pressure detection touch screen. The method includes detecting a touch input on a touch screen; generating compensated pressure information for compensating for inaccurate pressure information detected from the touch input, when the touch input is detected in an outer area on the touch screen; and generating compensated location information using the compensated pressure information.
Abstract:
A method for preventing a touch misrecognition includes counting a total number of touch detection values of a touch panel which is greater than or equal to a first threshold value; comparing the total number of touch detection values with a second threshold value; and when the total number of the touch detection values is greater than or equal to the second threshold value, determining that bending of the touch panel has occurred.