Abstract:
Provided are an optical lens assembly and an electronic apparatus including the same according to various embodiments. The optical lens assembly includes: a first lens group having a positive refractive power; a second lens group having a positive refractive power; and a bending unit located between the first lens group and the second lens group and configured to bend an optical path, wherein the first lens group, the second lens group, and the bending unit are sequentially arranged from an object side to an image side, and the optical lens assembly has a maximum viewing angle of 130° or more. Other embodiments may be implemented.
Abstract:
A fish eye lens system and a photographing apparatus including the same, the fish eye lens system including, in an order from an object side to an image side: a first lens group having a negative refractive power; an aperture stop; and a second lens group having a positive refractive power, wherein the first lens group includes, in the order from the object side to the image side, a (1-A)-th lens group having a negative refractive power, a (1-B)-th lens group having a negative refractive power, and a (1-C)-th lens group including at least one positive lens, and wherein the (1-B)-th lens group is moved to perform focusing.
Abstract:
An optical system may include: a first lens having positive refractive power facing an object, the first lens having a first convex face facing the object; a second lens having positive refractive power, the second lens having a second convex face facing the object; a third lens having negative refractive power, the third lens having a third concave face facing an image sensor; a fourth lens adjacent to the third lens; a fifth lens adjacent to the fourth lens, the fifth lens having a fourth face facing the object, the fourth face being convex where the fifth lens intersects the optical axis; and a sixth lens adjacent to the fifth lens. The characteristics of the optical system satisfy equation, 0.4
Abstract:
A lens assembly includes a plurality of lenses arranged from an object side to an image side on which an image plane is located, wherein the plurality of lenses include a first lens group that includes at least one lens having a positive refractive power, and is fixed to maintain a constant distance from the image plane during focusing, and a second lens group that includes a lens having at least one aspheric surface, and is configured to perform image plane alignment according to a change in an object distance of an object.
Abstract:
One or more embodiments of the disclosure relate to, for example, lens assemblies which may function not only as a wide angle lens but also as a telephoto lens. According to an embodiment, a lens assembly comprises a first lens having a positive refractive power, the first lens having a convex surface in a first direction, a second lens having a positive refractive power, the second lens having a convex surface in the first direction, a third lens having a negative refractive power, the third lens having a concave surface in a second direction opposite to the first direction, a fourth lens having a concave surface in the first direction and disposed to face the concave surface of the third lens, and a fifth lens having a positive refractive power, the fifth lens having a convex surface in the second direction. Other embodiments are also disclosed.
Abstract:
Provided are an optical lens assembly and an electronic apparatus including the same. The optical lens assembly includes a first lens group and a second lens group that are arranged from an object side to an image side, wherein the first lens group has positive refractive power and is fixed during focusing, and the second lens group moves along an optical axis for focusing.
Abstract:
An electronic device is disclosed. Moreover, various embodiment found through the disclosure are possible. An electronic device may include a lens assembly including, one or more lenses, an image sensor, an image stabilizer, and a processor. The lens assembly may be arranged to from a first angle between an optical axis of at least some lenses of the one or more lenses, and a surface of the image sensor. The processor may be configured to change an angle of the lens assembly through the image stabilizer in response to shaking of the electronic device, obtain an image through the image sensor, in a state that the angle of the lens assembly is changed, correct, based at least on the first angle and a second angle corresponding to the changed angle of the lens assembly, at least a portion of the image, which is distorted, by the second angle, and display the corrected image through a display electrically connected with the electronic device.
Abstract:
A zoom lens including a first lens group having a positive refractive power; a second lens group having a negative refractive power; a third lens group having a positive refractive power; a fourth lens group having a negative refractive power; and a fifth lens group having a positive refractive power. The first through fifth lens groups are arranged sequentially from an object side to an image side of the zoom lens, and the first lens group includes a doublet lens and a lens having a positive refractive power. The second lens group includes a first sub-lens group having a negative refractive power and a second sub-lens group having a negative refractive power that is arranged to perform a focusing function. Each of the lens groups is arranged to move when the zoom lens is zoomed.
Abstract:
A fish eye lens system and a photographing apparatus including the same, the fish eye lens system including, in an order from an object side to an image side: a first lens group having a negative refractive power; an aperture stop; and a second lens group having a positive refractive power, wherein the first lens group includes, in the order from the object side to the image side, a (1-A)-th lens group having a negative refractive power, a (1-B)-th lens group having a negative refractive power, and a (1-C)-th lens group including at least one positive lens, and wherein the (1-B)-th lens group is moved to perform focusing.