Abstract:
An electrode material may include a porous carbon material and an organic clay. An electrode for a capacitive deionization apparatus may include the electrode material. A method of removing ions from a fluid may include using the capacitive deionization apparatus.
Abstract:
Treating a fluid may include using a flow-through capacitor that includes first and second electrodes and a flow path between the first and second electrodes, wherein an acidic aqueous solution is supplied to the capacitor to flow through the flow path while a reverse potential difference is formed across the first and second electrodes, and thereby deposits formed in the flow-through capacitor may be removed.
Abstract:
Disclosed are a composition for an electrode binder of a capacitive deionization apparatus including at least one a hydrophilic polymer and a bifunctional cross-linking agent having a hydroxy group or a carboxyl group at both terminal ends, and at least one anion exchange group therein, and the bifunctional cross-linking agent being cross-linkable with the at least one hydrophilic polymer, an electrode for a capacitive deionization apparatus including the composition, a capacitive deionization apparatus including the electrode, and a method of removing ions from a liquid by using the capacitive deionization apparatus.
Abstract:
The present disclosure relates to a spacer structure that is configured to be disposed between a pair of electrodes in a capacitive deionization apparatus so as to provide a space for flowing a fluid therethrough. The spacer structure includes a copolymer prepared by copolymerizing a mixture of a polyurethane backbone including a carboxyl group or a sulfonic acid group, an ion conductive monomer including a carboxyl group and a cation exchange group, and a second polymer including a functional group that reacts with the carboxyl group or sulfonic acid group and forms a cross-linking bond with the polyurethane backbone.