Abstract:
The disclosure relates to a 5th generation (5G) or 6th generation (6G) communication system for supporting a data transmission rate higher than a 4th generation (4G) communication system such as long term evolution (LTE). A user equipment (UE) in a communication system is provided. The UE includes a transceiver, and a controller configured to receive, from a base station, system information including information related to transmission of a random access preamble, and to transmit, to the base station, a physical random access channel (PRACH) including the random access preamble. The PRACH includes at least one primary signal part including a first sequence for measuring a first delay within a symbol, and at least one secondary signal part including a second sequence for measuring a second delay in units of symbols, and a round trip delay (RTD) between the UE and the base station may be determined based on the first delay within the symbol and the second delay in units of symbols.
Abstract:
The disclosure relates to a 5G communication system or a 6G communication system for supporting higher data rates beyond a 4G communication system such as long term evolution (LTE). The disclosure relates to a technique for controlling a base station power using an artificial intelligence based technology to improve an energy efficiency of a communication network. A method performed by a base station of a communication system according to an embodiment of the disclosure may include acquiring state information, determining an active/sleep request indicator (ASRI) based on at least a part of the state information, transmitting at least one of the state information and the ASRI to a central unit, receiving, from the central unit, power control information determined based on the at least one of the state information and the ASRI, and performing a power control based on the received power control information.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system or a 6th-Generation (6G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system. Provided is a method, system, and apparatus for sharing a dynamic frequency in a wireless communication system. A method, performed by a network entity, of assigning a frequency channel, includes: receiving a frequency channel assignment request from a first device; identifying a device cluster including the first device; and assigning, to the first device, at least one frequency channel included in a frequency channel set assigned to the device cluster including the first device. The device cluster may satisfy a certain condition and may be a set of a plurality of devices sharing at least one frequency channel included in the frequency channel set.
Abstract:
A directional coupler according to various embodiment and an electronic device having the same are provided. The directional coupler includes a first layer having at least one conductive portion, a second layer disposed adjacent to the first layer in a first direction and having at least one conductive plate corresponding to the conductive portion of the first layer, a third layer disposed adjacent to the second layer in the first direction and including an RF signal transmission line, a fourth layer disposed adjacent to the third layer in the first direction and having a conductive line wound with at least one turn, and at least one conductive via electrically connecting the at least one conductive plate of the second layer and the conductive line of the fourth layer which is wound with at least one turn.
Abstract:
The disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system or a 6th-Generation (6G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system. A method of communicating with a user equipment by using a frequency resource of a second mobile communication provider in a mobile communication system, the method being performed by a first base station of a first mobile communication provider is provided. The method includes requesting to permit the first base station to use a second frequency resource of the second mobile communication provider, transmitting, to the user equipment, setting information, for establishing communication using the second frequency resource of the second mobile communication provider, through a first frequency resource of the first mobile communication provider, and communicating with the user equipment through the second frequency resource, based on the setting information.
Abstract:
An electronic device with a touch sensor includes a body mounted with an electronic element, and a cover detachably coupled to the body. The body includes a signal generating circuitry that generates an electric signal, a first antenna that transmits the electric signal, and a touch processing circuitry that processes a touch signal received through the first antenna. The cover includes a touch sensor that is driven by the electric signal and recognizes a touch, and a second antenna connected with the touch sensor. The second antenna receives the electric signal and transmits a touch signal sensed through the touch sensor unit.
Abstract:
The present invention relates to methods and apparatuses for providing guide information for a camera. An image is collected through the camera. The image includes a subject illuminated by a light source. An optimized direction is determined for the light source relative to the subject. Guide information is generated that specifies an adjustment of the light source relative to the subject for achieving the optimized direction for the light source. The generated guide information is outputted to provide a visual, audible, or tactile indication.
Abstract:
A method, performed by a first base station, of sharing a frequency resource with a second base station in a wireless communication system is provided. The method includes transmitting, to channel measurement target terminals determined from among terminals communicating with the first base station using first frequency resources, information instructing to transmit a signal for channel measurement to the second base station; transmitting, to the second base station, information indicating that the signal for channel measurement is to be transmitted from the channel measurement target terminals; receiving, from the second base station, measurement information about channels between the second base station and the channel measurement target terminals; determining a shared frequency resource to be shared with the second base station from among the first frequency resources, based on the measurement information about the channels between the second base station and the channel measurement target terminals; and transmitting information about the shared frequency resource to the second base station.
Abstract:
An electronic device with a touch sensor includes a body mounted with an electronic element, and a cover detachably coupled to the body. The body includes a signal generating circuitry that generates an electric signal, a first antenna that transmits the electric signal, and a touch processing circuitry that processes a touch signal received through the first antenna. The cover includes a touch sensor that is driven by the electric signal and recognizes a touch, and a second antenna connected with the touch sensor. The second antenna receives the electric signal and transmits a touch signal sensed through the touch sensor unit.