Abstract:
Provided are a semiconductor device and a method of operating the same. A semiconductor device may include a comparator which compares a first voltage with a rectified voltage and provides a second voltage in accordance with the comparison. A timer circuit may operate a timer according to the second voltage and output a third voltage in correspondence with an operation time of the timer. A driver may drive a transistor with a fourth voltage generated by the driver according to the third voltage. A calibration circuit may generate a timer calibration signal based on the second voltage and the fourth voltage. The timer calibration signal may be provided to the timer circuit and used to calibrate the operation time of the timer. More efficient rectification, with reduced occurrence of reverse current, may thereby be realized.
Abstract:
A method of operating a buck-boost converter including an inductor and a capacitor includes; operating the buck-boost converter in boost mode until a level of an input voltage applied at an input node of the buck-boost converter reaches a desired level of an output voltage apparent at an output node of the buck-boost converter, and after the level of an input voltage reaches the desired level of the output voltage, operating the buck-boost converter in buck mode, wherein operating the buck-boost converter in buck mode and operating the buck-boost converter in boost mode overlap at least in part temporally proximate a point at which the level of the input voltage exceeds the level of the output voltage.
Abstract:
A switching regulator includes a power converting unit and a switch driving unit. The power converting unit is configured to generate a direct current (DC) output voltage based on a switch driving signal and a DC input voltage. The switch driving unit is configured to generate a ripple voltage having information of an inductor current flowing through the power converting unit, add the ripple voltage to a reference voltage to generate a first voltage having a ripple, generate a feedback voltage based on the DC output voltage, compare the first voltage with the feedback voltage in a hysteresis mode to generate a comparison output, and generate the switch driving signal based on the comparison output.
Abstract:
An electronic device includes a load device and a power management integrated circuit. The power management integrated circuit is configured to calculate a load power value and provide the load power value to the load device in response to a request from the load device. The power management integrated circuit includes a plurality of regulators and a controller. Each of the plurality of regulators includes a current meter for measuring a load current value to be provided to the load device, and the controller is configured to calculate the load power value by using the load current value measured by the current meter and a load voltage value provided from each of the plurality of regulators to the load device.
Abstract:
A switching regulator includes a power converting unit and a switch driving unit. The power converting unit is configured to generate a direct current (DC) output voltage based on a switch driving signal and a DC input voltage. The switch driving unit is configured to generate a ripple voltage having information of an inductor current flowing through the power converting unit, add the ripple voltage to a reference voltage to generate a first voltage having a ripple, generate a feedback voltage based on the DC output voltage, compare the first voltage with the feedback voltage in a hysteresis mode to generate a comparison output, and generate the switch driving signal based on the comparison output.
Abstract:
A buck converter using a variable pulse includes a switching unit configured to convert a supply voltage supplied from an external device into an internal voltage, and a pulse controller configured to variably control a driving time of the switching unit according to a result obtained by detecting a difference between the supply voltage and an output voltage which is the internal voltage.
Abstract:
A device includes a function circuit that operates based on power provided by a first positive supply voltage and a first negative supply voltage, a monitoring circuit that operates based on power provided by a second positive supply voltage and a second negative supply voltage and that generates a first monitor signal based on monitoring an operation of the function circuit, and an output circuit that generates a second monitor signal based on monitoring the first positive supply voltage, generates a third monitor signal based on monitoring the second positive supply voltage, and generates an output signal that is output through one or more output pins, based on the first monitor signal, the second monitor signal, and the third monitor signal.
Abstract:
A control circuit in a switching regulator, the switching regulator including an inductor and a switching circuit configured to control a current passing through the inductor in response to a control signal, the control circuit configured to receive a feedback voltage of an output voltage of the switching regulator and receive the current passing through the inductor as a current sensing signal. The control circuit includes a first internal signal generator configured to generate a first internal signal based on the feedback voltage and a reference voltage, a second internal signal generator configured to generate a second internal signal based on the current sensing signal such that a base level of the second internal signal varies according to the feedback voltage and the reference voltage, and a comparator configured to output the control signal based on the first and second internal signals.
Abstract:
The inventive concepts relate to variable gain amplifiers. The variable gain amplifier including an amplifier, a first fixed resistor and a first variable resistor, a second fixed resistor and a second variable resistor, a third fixed resistor and a third variable resistor, a fourth fixed resistor and a fourth variable resistor, a first output terminal and a second output terminal, and a decoder may be provided. The decoder is configured to receive first control bits, generate second control bits from the first control bits, generate third and fourth control bits from the first or second control bits, respectively, transmit the first control bits and the third control bits to the third and fourth variable resistors to adjust resistance values, and transmit the second and fourth control bits to first and second variable resistors to adjust resistance values.
Abstract:
A device includes a function circuit that operates based on power provided by a first positive supply voltage and a first negative supply voltage, a monitoring circuit that operates based on power provided by a second positive supply voltage and a second negative supply voltage and that generates a first monitor signal based on monitoring an operation of the function circuit, and an output circuit that generates a second monitor signal based on monitoring the first positive supply voltage, generates a third monitor signal based on monitoring the second positive supply voltage, and generates an output signal that is output through one or more output pins, based on the first monitor signal, the second monitor signal, and the third monitor signal.