Abstract:
A window film and a flexible display including the same. The window film includes a base layer, a window coating layer on a surface of the base layer, and a back coating layer on another surface of the base layer, wherein the window coating layer is formed from a composition for window coating layers comprising a silicon-based resin, and the window film has an elastic modulus of about 1,000 Mpa or more on the back coating layer and has a pencil hardness of about 6H or higher on an adhesive layer.
Abstract:
A window film and a flexible display including the same. The window film includes a base layer, a window coating layer on a surface of the base layer, and a back coating layer on another surface of the base layer, wherein the window coating layer is formed from a composition for window coating layers comprising a silicon-based resin, and the window film has an elastic modulus of about 1,000 Mpa or more on the back coating layer and has a pencil hardness of about 6H or higher on an adhesive layer.
Abstract:
Provided are: a composition for a window film, containing a siloxane resin including chemical formula 1 below and an iodonium ion-containing photo-cationic initiator; a flexible window film formed therefrom; and a flexible display device comprising the same. Chemical formula 1: (R1SiO3/2)x(R2R3SiO2/2)y.
Abstract:
A method for evaluating dispersion of a light-to-heat conversion material in a thermal transfer film includes calculating optical densities OD1 and OD2 of the thermal transfer film according to Equations 2 and 3, and calculating a dispersion evaluation value ΔOD according to Equation 1. The thermal transfer film has good dispersion of the light-to-heat conversion material when the dispersion evaluation value ΔOD is 0.1 or less, and the thermal transfer film has poor dispersion of the light-to-heat conversion material when the dispersion evaluation value ΔOD is greater than 0.1. ΔOD=|OD2−OD1| Equation 1 OD1=−log(T2/T1) Equation 2 OD2=−log(T3/T1) Equation 3