Abstract:
A composition for a window film including a first silicon resin including a compound represented by Formula 1; a second silicon resin including a crosslinkable functional group and at least one of a Q unit and a bridge unit; a crosslinking agent; and an initiator, a flexible window film formed therefrom, and a flexible display device including the same are disclosed.
Abstract:
Provided are a composition for a window film, a flexible window film formed therefrom, and a flexible display device comprising the same, wherein the composition for a window film, contains: (1) a siloxane resin comprising (R1SiO3/2)x(R2SiO3/2)y (wherein, R1 is a cross-linkable functional group, R2 is a UV absorbing functional group or a UV absorbing functional group-containing group, and 0
Abstract:
Provided are: a composition for a window film, containing a silicone resin comprising chemical formula 1 below, a cross-linking agent, and an initiator; a window film formed therefrom; and a flexible display device comprising the same. (R1SiO3/2)x(SiO3/2-Q-SiO3/2)y(R2SiO3/2)z (In chemical formula 1, R1 and R2 are each independently a cycloaliphatic epoxy group, a cycloaliphatic epoxy group-containing functional group, a glycidyl group, or a glycidyl group-containing functional group; Q is R3 or -A1-T-A2-; R3 is a substituted or unsubstituted C1 to C10 alkylene group, or a substituted or unsubstituted C6 to C30 arylene group; A1 and A2 are each independently a single bond, or a substituted or unsubstituted C1 to C5 alkylene group; T is a mono- or polyalkylene oxide group, or an imide group-containing functional group; and 0
Abstract:
Provided are: a composition for a window film, containing a siloxane resin including chemical formula 1, a cross-linking agent, and an initiator; a flexible window film formed therefrom; and a flexible display device including the same.
Abstract:
Provided are a composition for a window film, a flexible window film formed therefrom, and a flexible display device comprising same, the composition for a window film comprising: a first silicone resin comprising chemical formula 1; a second silicone resin containing a crosslinkable functional group and one or more among a Q unit and a bridge unit; a crosslinking agent; and an initiator. (R1SiO3/2)x([R2R3SiO2/2]n)y(R4R5SiO2/2)z(R6R7R8SiO1/2)w (where R1 is a crosslinkable functional group; R2 and R3 are each independently a methyl group; R4 and R5 are each independently hydrogen, a crosslinkable functional group, an unsubstituted or substituted C1-C20 alkyl group, or an unsubstituted or substituted C5-C20 cycloalkyl group; R6, R7, and R8 are each independently hydrogen, a crosslinkable functional group, an unsubstituted or substituted C1-C20 alkyl group, an unsubstituted or substituted C5-C20 cycloalkyl group, or an unsubstituted or substituted C6-C30 aryl group; n is an integer from 7 to 100; 0
Abstract:
Provided are a composition for a window film, a flexible window film formed therefrom, and a flexible display device comprising the same, wherein the composition for a window film, contains: (1) a siloxane resin comprising (R1SiO3/2)x(R2SiO3/2)y (wherein, R1 is a cross-linkable functional group, R2 is a UV absorbing functional group or a UV absorbing functional group-containing group, and 0
Abstract:
A composition for a window film includes a siloxane resin represented by Formula 1, and an initiator. A flexible window film is manufactured using the same, and has a pencil hardness of about 7H or higher, a radius of curvature of about 5.0 mm or lower, and a difference in yellow index before and after irradiation (ΔY.I.) of about 5.0 or less. A flexible display includes the flexible window film. (R1SiO3/2)x(R2R3SiO2/2)y Formula 1
Abstract:
A composition for a window film includes a siloxane resin represented by Formula 1, 4 or 7, or a mixture thereof, and an initiator. A flexible window film is manufactured using the same, and has a pencil hardness of about 7H or higher, a radius of curvature of about 5.0 mm or less, and a difference in yellow index before and after irradiation (ΔY.I.) of about 5.0 or less. A flexible display includes the flexible window film. (R1SiO3/2)x(R2R3SiO2/2)y Formula 1 (R1SiO3/2)x(R9SiO3/2)z Formula 4 (R1SiO3/2)x(R2R3SiO2/2)y(R9SiO3/2)z Formula 7
Abstract:
A composition for a window film includes a siloxane resin represented by Formula 1, 4 or 7, or a mixture thereof, and an initiator. A flexible window film is manufactured using the same, and has a pencil hardness of about 7H or higher, a radius of curvature of about 5.0 mm or less, and a difference in yellow index before and after irradiation (ΔY.I.) of about 5.0 or less. A flexible display includes the flexible window film. (R1SiO3/2)x(R2R3SiO2/2)y Formula 1 (R1SiO3/2)x(R9SiO3/2)z Formula 4 (R1SiO3/2)x(R2R3SiO2/2)y(R9SiO3/2)z Formula 7
Abstract:
A method for evaluating dispersion of a light-to-heat conversion material in a thermal transfer film includes calculating optical densities OD1 and OD2 of the thermal transfer film according to Equations 2 and 3, and calculating a dispersion evaluation value ΔOD according to Equation 1. The thermal transfer film has good dispersion of the light-to-heat conversion material when the dispersion evaluation value ΔOD is 0.1 or less, and the thermal transfer film has poor dispersion of the light-to-heat conversion material when the dispersion evaluation value ΔOD is greater than 0.1. ΔOD=|OD2−OD1| Equation 1 OD1=−log(T2/T1) Equation 2 OD2=−log(T3/T1) Equation 3