Abstract:
The application relates to a positive active material precursor including a transition metal composite oxide precursor. The transition metal composite oxide precursor exhibits a peak full width at half maximum of a (200) plane (2θ=about 42° to about 44°) in X-ray diffraction analysis in a range of about 0.3° to about 0.5°. The application also relates to a positive active material using the precursor, a method of preparing the same, and a positive electrode and a rechargeable lithium battery including the same.
Abstract:
The present disclosure relates to a cathode active material for a lithium secondary battery, a method for preparing same, and a lithium secondary battery comprising same, the cathode active material comprising a lithium-nickel compound oxide, wherein a c-axis lattice parameter of a unit lattice of the lithium-nickel compound oxide satisfies Formula 1: 14.1720 ÅA≤c≤14.1750 ÅA [Formula 1]
Abstract:
A positive active material for a rechargeable lithium battery includes a lithium nickel-based metal oxide represented by LixNi1-yMyO2 and a lithium-containing oxide on a surface of the lithium nickel-based metal oxide. In the formula LixNi1-yMyO2, M is one or more of Co, Mn, Al, Mg, Ti, Zr, or a combination thereof, 0
Abstract:
Disclosed are a positive active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same. The positive active material includes a first positive active material in a form of secondary particles including a plurality of primary particles that are aggregated together, and a second positive active material having a single crystal form, wherein both of the first positive active material and the second positive active material are nickel-based positive active materials, each of the first positive active material and the second positive active material is coated with cobalt, and a maximum roughness of a surface of the second positive active material is greater than or equal to about 15 nm.
Abstract:
The application relates to a positive active material precursor including a transition metal composite oxide precursor. The transition metal composite oxide precursor exhibits a peak full width at half maximum of a (200) plane (2θ=about 42° to about 44°) in X-ray diffraction analysis in a range of about 0.3° to about 0.5°. The application also relates to a positive active material using the precursor, a method of preparing the same, and a positive electrode and a rechargeable lithium battery including the same.
Abstract:
A positive electrode active material includes a lithium composite oxide and a zirconium oxide coating layer and a lithium zirconium oxide coating layer that are in a form of sequential layers on the lithium composite oxide.
Abstract:
A positive active material represented by Formula 1 and a lithium secondary battery having a positive electrode that includes the positive active material are provided: Li1-aAaNixCoyMn1-x-yO2 Formula 1 wherein, in Formula 1, A is an alkali metal; 0.0025≦a≦0.02; 0.0
Abstract:
Provided is a lithium cobalt composite oxide for a lithium secondary battery represented by Formula 1 below and having a polycrystalline state, a method of preparing the same, a positive electrode for a lithium battery including the lithium cobalt composite oxide, and a lithium secondary battery including a positive electrode, which includes the lithium cobalt composite oxide. LiaCobOc Formula 1 In Formula 1, a is an integer from 0.9 to 1.1, b is an integer from 0.980 to 1.0000, and c is an integer from 1.9 to 2.1. Also included is a method of manufacture therefor.
Abstract:
A positive active material for a rechargeable lithium battery includes a core including a compound represented by Chemical Formula 1 and a functional layer on a surface of the core. The functional layer has one kind of a crystal structure that is different from the crystal structure of the core. The positive active material includes about 100 ppm to about 400 ppm of sulfur: LiaNixCoyMezO2, Chemical Formula 1 wherein in Chemical Formula 1, 0.9≤a≤1.1, 0.5≤x≤0.93, 0
Abstract:
Provided is a lithium cobalt composite oxide for a lithium secondary battery represented by Formula 1 below and having a polycrystalline state, a method of preparing the same, a positive electrode for a lithium battery including the lithium cobalt composite oxide, and a lithium secondary battery including a positive electrode, which includes the lithium cobalt composite oxide. LiaCobOc Formula 1 In Formula 1, a is an integer from 0.9 to 1.1, b is an integer from 0.980 to 1.0000, and c is an integer from 1.9 to 2.1. Also included is a method of manufacture therefor.