Abstract:
In an aspect, an electrolyte additive and an electrolyte for a lithium battery and a lithium battery including the electrolyte additive is provided. The electrolyte additive includes a sulfone compound wherein the sulfonyl group is directly bonded to a halide group and an electron withdrawing group.
Abstract:
A lithium battery includes a cathode including a cathode active material an anode including an anode active material and an organic electrolytic solution between the cathode and the anode, wherein the cathode includes a carbonaceous nanostructure, and the organic electrolytic solution includes a first lithium salt, an organic solvent, and a bicyclic sulfate-based compound represented by Formula 1 below: wherein, in Formula 1, each of A1, A2, A3, and A4 is independently a covalent bond, a substituted or unsubstituted C1-C5 alkylene group, a carbonyl group, or a sulfinyl group, in which both A1 and A2 are not a covalent bond and both A3 and A4 are not a covalent bond.
Abstract:
An electrolyte for a lithium battery and a lithium battery including the electrolyte. The electrolyte is employed in the lithium battery so as to improve cycle characteristics of the lithium battery that is operable at high voltages.
Abstract:
An electrolyte for a lithium battery includes an organic solvent; and a compound represented by Formula 1: wherein, in Formula 1, X1 to X4, A1 to A4, and R1 to R4 are further defined in the specification.
Abstract:
An electrolyte for a lithium battery and a lithium battery including the electrolyte. The electrolyte is employed in the lithium battery so as to improve cycle characteristics of the lithium battery that is operable at high voltages.
Abstract:
The present disclosure provides an organic electrolytic solution including an organic solvent, a lithium salt, one or more ester sulfate compounds, and one or more phosphoric acid-based ester compounds, and a lithium battery including the organic electrolytic. The lifetime characteristics and high temperature storage characteristics of lithium batteries including this organic electrolytic solution composition may be improved
Abstract:
A lithium battery includes a cathode including a cathode active material; an anode including an anode active material; and an organic electrolytic solution between the cathode and the anode. The cathode active material includes a nickel-containing layered lithium transition metal oxide. A content of nickel in the lithium transition metal oxide is about 60 mol % or more with respect to a total number of moles of transition metals. The organic electrolytic solution includes a first lithium salt; an organic solvent; and a bicyclic sulfate-based compound represented by Formula 1 below: wherein, in Formula 1, each of A1, A2, A3, and A4 is independently a covalent bond, a substituted or unsubstituted C1-C5 alkylene group, a carbonyl group, or a sulfinyl group, in which both A1 and A2 are not a covalent bond and both A3 and A4 are not a covalent bond.
Abstract:
A lithium battery includes a cathode including a cathode active material, an anode including an anode active material, and an organic electrolytic solution between the cathode and the anode, wherein the organic electrolytic solution includes a first lithium salt, a second lithium salt, an organic solvent, and a bicyclic sulfate-based compound represented by Formula 1 below: wherein, in Formula 1, each of A1, A2, A3, and A4 is independently a covalent bond, a substituted or unsubstituted C1-C5 alkylene group, a carbonyl group, or a sulfinyl group, in which both A1 and A2 are not a covalent bond and both A3 and A4 are not a covalent bond. The second lithium salt includes at least one selected from LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, Li(FSO2)2N, and LiN(CxF2x+1SO2)(CyF2y+1SO2) where 2≤x≤20 and 2≤y≤20.
Abstract:
A lithium battery includes a cathode including a cathode active material, an anode including an anode active material, and an organic electrolytic solution between the cathode and the anode. The anode active material includes a metal-based anode active material. The organic electrolytic solution includes a first lithium salt; an organic solvent; and a bicyclic sulfate-based compound represented by Formula 1 below: wherein, in Formula 1, each of A1, A2, A3, and A4 is independently a covalent bond, a substituted or unsubstituted C1-C5 alkylene group, a carbonyl group, or a sulfinyl group, wherein both A1 and A2 are not a covalent bond and both A3 and A4 are not a covalent bond.
Abstract:
A lithium battery includes a cathode including a cathode active material; an anode including an anode active material; and an organic electrolytic solution between the cathode and the anode, wherein the anode active material includes natural graphite and artificial graphite, an amount of the artificial graphite being about 50 wt % or more based on a total weight of the anode active material, and the organic electrolytic solution includes: a first lithium salt; an organic solvent; and a bicyclic sulfate-based compound represented by Formula 1 below: wherein, in Formula 1, each of A1, A2, A3, and A4 is independently a covalent bond, a substituted or unsubstituted C1-C5 alkylene group, a carbonyl group, or a sulfinyl group, in which both A1 and A2 are not a covalent bond and both A3 and A4 are not a covalent bond.