Abstract:
A static induction transistor comprising: a region of semiconductor material having a first conductivity type; at least two spaced-apart gate regions formed in the region of semiconductor material, the gate regions having a second conductivity type that is opposite to the first conductivity type; at least one source region having the first conductivity type formed in the region of semiconductor material between the spaced-apart gate regions; a drain region having the first conductivity type formed in the region of semiconductor and spaced-apart from the source region to define a channel region therebetween; and a dielectric carrier separation layer formed at the periphery of the gate regions.
Abstract:
The Si substrate of a group III-N HEMT is formed in layers that define a p-n junction which electrically isolates an upper region of the Si substrate from a lower region of the Si substrate. As a result, the upper region of the Si substrate can electrically float, thereby obtaining a full buffer breakdown voltage, while the lower region of the Si substrate can be attached to a package by way of a conductive epoxy, thereby significantly improving the thermal conductivity of the group III-N HEMT and minimizing undesirable floating-voltage regions.
Abstract:
The Si substrate of a group III-N HEMT is formed in layers that define a p-n junction which electrically isolates an upper region of the Si substrate from a lower region of the Si substrate. As a result, the upper region of the Si substrate can electrically float, thereby obtaining a full buffer breakdown voltage, while the lower region of the Si substrate can be attached to a package by way of a conductive epoxy, thereby significantly improving the thermal conductivity of the group III-N HEMT and minimizing undesirable floating-voltage regions.
Abstract:
The buffer breakdown of a group III-N HEMT on a p-type Si substrate is significantly increased by forming an n-well in the p-type Si substrate to lie directly below the metal drain region of the group III-N HEMT. The n-well forms a p-n junction which becomes reverse biased during breakdown, thereby increasing the buffer breakdown by the reverse-biased breakdown voltage of the p-n junction and allowing the substrate to be grounded. The buffer layer of a group III-N HEMT can also be implanted with n-type and p-type dopants which are aligned with the p-n junction to minimize any leakage currents at the junction between the substrate and the buffer layer.
Abstract:
The buffer breakdown of a group III-N HEMT on a p-type Si substrate is significantly increased by forming an n-well in the p-type Si substrate to lie directly below the metal drain region of the group III-N HEMT. The n-well forms a p-n junction which becomes reverse biased during breakdown, thereby increasing the buffer breakdown by the reverse-biased breakdown voltage of the p-n junction and allowing the substrate to be grounded. The buffer layer of a group III-N HEMT can also be implanted with n-type and p-type dopants which are aligned with the p-n junction to minimize any leakage currents at the junction between the substrate and the buffer layer.
Abstract:
An enhancement-mode group III-N high electron mobility transistor (HEMT) with a reverse polarization cap is formed in a method that utilizes a reverse polarization cap structure, such as an InGaN cap structure, to deplete the two-dimensional electron gas (2DEG) and form a normally off device, and a spacer layer that lies below the reverse polarization cap structure and above the barrier layer of the HEMT which allows the reverse polarization cap layer to be etched without etching into the barrier layer.
Abstract:
CMOS image sensor having high sensitivity and low crosstalk, particularly at far-red to infrared wavelengths, and a method for fabricating a CMOS image sensor. A CMOS image sensor has a substrate, an epitaxial layer above the substrate, and a plurality of pixels extending into the epitaxial layer for receiving light. The image sensor also includes at least one of a horizontal barrier layer between the substrate and the epitaxial layer for preventing carriers generated in the substrate from moving to the epitaxial layer, and a plurality of lateral barrier layers between adjacent ones of the plurality of pixels for preventing lateral diffusion of electrons in the epitaxial layer.
Abstract:
A buried channel and a method of fabricating a buried channel in a substrate including depositing a layer of masking material onto a surface of a substrate, etching a groove in the masking layer, etching a channel into the substrate through the groove, and depositing a cover layer over the masking layer and groove such that the covering layer at least substantially closes over the groove.
Abstract:
An enhancement-mode group III-N high electron mobility transistor (HEMT) with a reverse polarization cap is formed in a method that utilizes a reverse polarization cap structure, such as an InGaN cap structure, to deplete the two-dimensional electron gas (2DEG) and form a normally off device, and a spacer layer that lies below the reverse polarization cap structure and above the barrier layer of the HEMT which allows the reverse polarization cap layer to be etched without etching into the barrier layer.
Abstract:
CMOS image sensor having high sensitivity and low crosstalk, particularly at far-red to infrared wavelengths, and a method for fabricating a CMOS image sensor. A CMOS image sensor has a substrate, an epitaxial layer above the substrate, and a plurality of pixels extending into the epitaxial layer for receiving light. The image sensor also includes at least one of a horizontal barrier layer between the substrate and the epitaxial layer for preventing carriers generated in the substrate from moving to the epitaxial layer, and a plurality of lateral barrier layers between adjacent ones of the plurality of pixels for preventing lateral diffusion of electrons in the epitaxial layer.