摘要:
A method for quantitatively determining dynamic barite sag in drilling fluids includes measuring rheological properties with viscometers and/or rheometers, and introducing the parameters into an equation to obtain the sag rate.
摘要:
A method for quantitatively determining dynamic barite sag in drilling fluids includes measuring rheological properties with viscometers and/or rheometers, and introducing the parameters into an equation to obtain the sag rate.
摘要:
Apparatus and methods for simulation of bore hole fractures are disclosed. A device for simulating a fracture in a subterranean formation comprises a housing, a gap in the housing, and one or more shims positioned inside the gap. The shims cover at least a portion of a surface of a wall forming the gap. The device further comprises an inlet for directing a sample fluid into the gap. The sample fluid flows through the gap and flows out of the gap through an outlet.
摘要:
Apparatus and methods for simulation of bore hole fractures are disclosed. A device for simulating a fracture in a subterranean formation comprises a housing, a gap in the housing, and one or more shims positioned inside the gap. The shims cover at least a portion of a surface of a wall forming the gap. The device further comprises an inlet for directing a sample fluid into the gap. The sample fluid flows through the gap and flows out of the gap through an outlet.
摘要:
Of the many compositions and methods provided here, one method includes providing a drilling fluid comprising a lost circulation material and a base drilling fluid, wherein the base drilling fluid comprises an oleaginous continuous phase and a polar organic molecule, wherein the base drilling fluid has a first normal stress difference magnitude (|N1|) greater than about 100 Pa; and drilling a portion of a wellbore in a subterranean formation using the drilling fluid.
摘要:
A method for determining a Plug Normal Stress Difference (ΔN1(P)) may include providing a test base drilling fluid that is characterized by N1(TB); adding a first concentration of a test particulate to the test base drilling fluid; adjusting the concentration of the test particulate in the test base drilling fluid to achieve a minimum concentration of the test particulate in the test base drilling fluid that will substantially plug a tapered slot, wherein the test base drilling fluid with the minimum concentration of the test particulate is characterized by N1(TA); and calculating ΔN1(P)=|N1(TA)|−|N1(TB)| wherein each First Normal Stress Difference is measured by the same procedure.
摘要:
A drilling fluid may include a base drilling fluid and a plurality of particulates, wherein a concentration of the particulates in the base drilling fluid provides for ΔN1(F)≧ΔN1(P), wherein ΔN1(F)=|N1(A)|−|N1(B)|. The particulates may be lost circulation materials including, for example, fibers.
摘要:
Of the many compositions and methods provided herein, one method includes providing a drilling fluid comprising a base drilling fluid and a plurality of particulates, wherein the base drilling fluid without the particulates is characterized by N1(B) and wherein the base drilling fluid with the particulates is characterized by N1(A); and adjusting a concentration of the particulates in the drilling fluid by comparing the value of ΔN1(F) to ΔN1(P) so that ΔN1(F)≧ΔN1(P), wherein ΔN1(F)=|N1(A)|−|N1(B)|.
摘要:
A method of wellbore strengthening may include providing a wellbore strengthening fluid comprising a drilling fluid, a particulate, and a fiber; introducing the wellbore strengthening fluid into a wellbore penetrating a subterranean formation; and forming a plug comprising the particulate and the fiber in a void near the wellbore, the plug being capable of maintaining integrity at about 1000 psi or greater overbalance pressure.
摘要:
A method for determining a Plug Normal Stress Difference (ΔN1(P)) may include providing a test base drilling fluid that is characterized by N1(TB); adding a first concentration of a test particulate to the test base drilling fluid; adjusting the concentration of the test particulate in the test base drilling fluid to achieve a minimum concentration of the test particulate in the test base drilling fluid that will substantially plug a tapered slot, wherein the test base drilling fluid with the minimum concentration of the test particulate is characterized by N1(TA); and calculating ΔN1(P)=|N1(TA)|−|N1(TB)| wherein each First Normal Stress Difference is measured by the same procedure.