摘要:
A zero-emissions power plant receives natural gas from wells at elevated pressure and temperature. Gas is expanded through one or more turbo-expanders, preferably reformed, and sent to a fuel cell where electricity, heat, carbon-dioxide, and water are generated. The carbon-dioxide is compressed by at least one compressor and piped downhole for sequestration. The turbo-expanders have shafts which preferably share the shafts of the compressors. Thus, energy given up by the natural gas in the turbo-expanders is used to run compressors which compress carbon dioxide for downhole sequestration. In one embodiment, the natural gas is applied to heat exchangers in order to generate a stream of liquid natural gas. The remainder of the gas is expanded through the turbo-expanders and processed in the reformer prior to being sent to the fuel cell. A shifter may be used between the reformer and fuel cell. A solid oxide fuel cell is preferred.
摘要:
Methods and systems are provided where a production gas stream including natural gas and carbon dioxide is separated downhole using dual reflux pressure swing adsorption with the natural gas being produced and the carbon dioxide being directed for downhole storage (sequestration).
摘要:
A zero-emissions power plant receives natural gas from wells at elevated pressure and temperature. Gas is expanded through one or more turbo-expanders, preferably reformed, and sent to a fuel cell where electricity, heat, carbon-dioxide, and water are generated. The carbon-dioxide is compressed by at least one compressor and piped downhole for sequestration. The turbo-expanders have shafts which preferably share the shafts of the compressors. Thus, energy given up by the natural gas in the turbo-expanders is used to run compressors which compress carbon dioxide for downhole sequestration. In one embodiment, the natural gas is applied to heat exchangers in order to generate a stream of liquid natural gas. The remainder of the gas is expanded through the turbo-expanders and processed in the reformer prior to being sent to the fuel cell. A shifter may be used between the reformer and fuel cell. A solid oxide fuel cell is preferred.
摘要:
A zero-emissions power plant receives natural gas from wells at elevated pressure and temperature. Gas is expanded through one or more turbo-expanders, preferably reformed, and sent to a fuel cell where electricity, heat, carbon-dioxide, and water are generated. The carbon-dioxide is compressed by at least one compressor and piped downhole for sequestration. The turbo-expanders have shafts which preferably share the shafts of the compressors. Thus, energy given up by the natural gas in the turbo-expanders is used to run compressors which compress carbon dioxide for downhole sequestration. In one embodiment, the natural gas is applied to heat exchangers in order to generate a stream of liquid natural gas. The remainder of the gas is expanded through the turbo-expanders and processed in the reformer prior to being sent to the fuel cell. A shifter may be used between the reformer and fuel cell. A solid oxide fuel cell is preferred.
摘要:
Methods and systems are provided for controlling operational parameters of a CO2 compression surface facility or pipeline in order to maintain a CO2 stream having impurities flowing in the pipeline in a liquid or supercritical phase. Sensors may be provided to sense whether the flow is single-phase or two-phase flow, and feedback provided to adjust the pressure and/or temperature at the pipeline inlet. The system is preferably optimized to limit power consumption and/or cost.
摘要:
Methods and systems are provided for controlling operational parameters of a CO2 compression surface facility or pipeline in order to maintain a CO2 stream having impurities flowing in the pipeline in a liquid or supercritical phase. Sensors may be provided to sense whether the flow is single-phase or two-phase flow, and feedback provided to adjust the pressure and/or temperature at the pipeline inlet. The system is preferably optimized to limit power consumption and/or cost.
摘要:
Methods, systems and apparatuses are provided for facilitating sequestration of naturally occurring or anthropogenic carbon dioxide. The methods, systems and apparatuses of the present invention include a software interface for facilitating an exchange of data among associated simulators which simulate various steps of the carbon sequestration process.
摘要:
Methods and systems are provided where a production gas stream including natural gas and carbon dioxide is separated downhole using dual reflux pressure swing adsorption with the natural gas being produced and the carbon dioxide being directed for downhole storage (sequestration).
摘要:
A zero-emissions power plant receives natural gas from wells at elevated pressure and temperature. Gas is expanded through one or more turbo-expanders, preferably reformed, and sent to a fuel cell where electricity, heat, carbon-dioxide, and water are generated. The carbon-dioxide is compressed by at least one compressor and piped downhole for sequestration. The turbo-expanders have shafts which preferably share the shafts of the compressors. Thus, energy given up by the natural gas in the turbo-expanders is used to run compressors which compress carbon dioxide for downhole sequestration. In one embodiment, the natural gas is applied to heat exchangers in order to generate a stream of liquid natural gas. The remainder of the gas is expanded through the turbo-expanders and processed in the reformer prior to being sent to the fuel cell. A shifter may be used between the reformer and fuel cell. A solid oxide fuel cell is preferred.
摘要:
An electrolyzer cell (10) for the electrolysis of water comprises a cathode (12) of generally tubular configuration within which is disposed an anode (16) separated from the cathode (12) by a separation membrane (14) of generally tubular configuration which divides the electrolyte chamber (15) into an anode sub-chamber 15a and a cathode sub-chamber (15b). An electrolyzer apparatus (36) includes an array (38) of individual cells (10)across each of which an electric potential is imposed by a DC generator (40) via electrical leads (42a, 42b). Hydrogen gas generated within cells (10) from electrolyte (18) is removed via hydrogen gas take-off lines (20) and hydrogen manifold line (21). By-product oxygen is removed from cells (10) by oxygen gas take-off lines (22) and oxygen manifold line (23). The electrolyzer apparatus (36) may be configured to operate either batchwise or in a continuous electrolyterecycle operation to produce high purity hydrogen at high pressure, e.g., up to about (10,000) psig, without need for gas compressors to compress product hydrogen.