摘要:
Embodiments disclosed herein address the need in the art for efficient management of grant, acknowledgement, and rate control channels. In one aspect, a list associated with a first station is generated or stored, the list comprising zero or more identifiers, each identifier identifying one of a plurality of second stations for sending a message to the first station. In another aspect, sets of lists for one or more first stations are generated or stored. In yet another aspect, the messages may be acknowledgements, rate control commands, or grants. In yet another aspect, messages comprising one or more identifiers in the list are generated. Various other aspects are also presented. These aspects have the benefit of reduced overhead while managing grant, acknowledgment and rate control messaging for one or more remote stations.
摘要:
An acknowledgement method in a wireless communication system. Initially, a reverse supplemental channel (R-SCH) frame is received at a base station. The base station then transmits an acknowledgement (ACK) signal if quality of the received R-SCH frame is indicated as being good. A negative acknowledgement (NAK) signal is transmitted only if the received data frame is indicated as being bad but has enough energy such that, if combined with energy from retransmission of the data frame, it would be sufficient to permit correct decoding of the data frame. If the best base station is known, the acknowledgement method may reverse the transmission of the acknowledgement signals for the best base station so that only NAK signal is sent. A positive acknowledgement is assumed in the absence of an acknowledgement. This is done to minimize the transmit power requirements.
摘要:
Embodiments disclosed herein address the need in the art for reduced overhead control with the ability to adjust transmission rates as necessary. In one aspect, a first signal indicates an acknowledgement of a decoded subpacket and whether or not a rate control command is generated, and a second signal conditionally indicates the rate control command when one is generated. In another aspect, a grant may be generated concurrently with the acknowledgement. In yet another aspect, a mobile station monitors the first signal, conditionally monitors the second signal as indicated by the first signal, and may monitor a third signal comprising a grant. In yet another aspect, one or more base stations transmit one or more of the various signals. Various other aspects are also presented. These aspects have the benefit of providing the flexibility of grant-based control while utilizing lower overhead when rate control commands are used, thus increasing system utilization, increasing capacity and throughput.
摘要:
Embodiments disclosed herein address the need in the art for an extended acknowledgment/rate control channel. In one aspect, an acknowledgment command and a rate control command are combined to form a combined command. In another aspect, the combined command is generated in accordance with a constellation of points, each point corresponding to a pair consisting of a rate control command and an acknowledgment command. In yet another aspect, the points of the constellation are designed to provide the desired probability of error for the respective command pairs. In yet another aspect, a common rate control command is transmitted along with a combined or dedicated rate control command. Various other aspects are also presented. These aspects have the benefit of reduced overhead while providing acknowledgment and rate control to single remote stations and/or groups of remote stations.
摘要:
Embodiments disclosed herein address the need in the art for reduced overhead control with the ability to adjust transmission rates as necessary. In one aspect, a first signal indicates an acknowledgement of a decoded subpacket and whether or not a rate control command is generated, and a second signal conditionally indicates the rate control command when one is generated. In another aspect, a grant may be generated concurrently with the acknowledgement. In yet another aspect, a mobile station monitors the first signal, conditionally monitors the second signal as indicated by the first signal, and may monitor a third signal comprising a grant. In yet another aspect, one or more base stations transmit one or more of the various signals. Various other aspects are also presented. These aspects have the benefit of providing the flexibility of grant-based control while utilizing lower overhead when rate control commands are used, thus increasing system utilization, increasing capacity and throughput.
摘要:
An acknowledgement method in a wireless communication system. Initially, a reverse supplemental channel (R-SCH) frame is received at a base station. The base station then transmits an acknowledgement (ACK) signal if quality of the received R-SCH frame is indicated as being good. A negative acknowledgement (NAK) signal is transmitted only if the received data frame is indicated as being bad but has enough energy such that, if combined with energy from retransmission of the data frame, it would be sufficient to permit correct decoding of the data frame. If the best base station is known, the acknowledgement method may reverse the transmission of the acknowledgement signals for the best base station so that only NAK signal is sent. A positive acknowledgement is assumed in the absence of an acknowledgement. This is done to minimize the transmit power requirements.
摘要:
An acknowledgement method in a wireless communication system. Initially, a reverse supplemental channel (R-SCH) frame is received at a base station. The base station then transmits an acknowledgement (ACK) signal if quality of the received R-SCH frame is indicated as being good. A negative acknowledgement (NAK) signal is transmitted only if the received data frame is indicated as being bad but has enough energy such that, if combined with energy from retransmission of the data frame, it would be sufficient to permit correct decoding of the data frame. If the best base station is known, the acknowledgement method may reverse the transmission of the acknowledgement signals for the best base station so that only NAK signal is sent. A positive acknowledgement is assumed in the absence of an acknowledgement. This is done to minimize the transmit power requirements.
摘要:
A method for power control in a wireless communication system. An initial transmission of a data frame in the reverse link is received, and a first energy level of the data frame is measured. An energy deficit in the first energy level is then measured if the first energy level is insufficient to correctly decode the data frame, so that when the data frame is retransmitted with a second energy level equal to a difference between the first energy level and the energy deficit, the data frame can be correctly decoded with combined energy of the first energy level and the second energy level.
摘要:
An acknowledgement method in a wireless communication system. Initially, a reverse supplemental channel (R-SCH) frame is received at a base station. The base station then transmits an acknowledgement (ACK) signal if quality of the received R-SCH frame is indicated as being good. A negative acknowledgement (NAK) signal is transmitted only if the received data frame is indicated as being bad but has enough energy such that, if combined with energy from retransmission of the data frame, it would be sufficient to permit correct decoding of the data frame. If the best base station is known, the acknowledgement method may reverse the transmission of the acknowledgement signals for the best base station so that only NAK signal is sent. A positive acknowledgement is assumed in the absence of an acknowledgement. This is done to minimize the transmit power requirements.
摘要:
Embodiments disclosed herein address the need in the art for reduced overhead control with the ability to adjust transmission rates as necessary. In one aspect, a first signal indicates an acknowledgement of a decoded subpacket and whether or not a rate control command is generated, and a second signal conditionally indicates the rate control command when one is generated. In another aspect, a grant may be generated concurrently with the acknowledgement. In yet another aspect, a mobile station monitors the first signal, conditionally monitors the second signal as indicated by the first signal, and may monitor a third signal comprising a grant. In yet another aspect, one or more base stations transmit one or more of the various signals. Various other aspects are also presented. These aspects have the benefit of providing the flexibility of grant-based control while utilizing lower overhead when rate control commands are used, thus increasing system utilization, increasing capacity and throughput.