摘要:
Provided are a wireless power transmission device and wireless power reception device. A power-relaying resonant coil is disposed between a power transmitter and a power receiver to increase transmission efficiency and lengthen a transmission distance. The wireless power transmission device includes a power generation module for generating power, a power coil for receiving the power, a transmitting coil for resonating at the unique resonant frequency due to magnetic induction with the power coil and generating a non-radiative electromagnetic wave, and one or more power relay coils for relaying the non-radiative electromagnetic wave.
摘要:
Provided is a wireless power transfer device. The wireless power transfer device includes an power generator, and two or more non-radiative electromagnetic wave generators. The power generator generates AC type of power. The non-radiative electromagnetic wave generators receive the power, and generate non-radiative electromagnetic waves through resonance. The non-radiative electromagnetic wave generators are disposed to form a wireless power transfer-enabled transfer area.
摘要:
Provided are a wireless power transmission receiver and a system including the same, particularly to a receiver and transmitter transmitting power from one transmitter to a plurality of receivers at the same time by wireless. According to the present invention, the wireless power receiver comprises a receiving coil unit receiving power from a transmitter by a resonance coupling method; and a power receiving unit receiving power from the receiving coil unit to provide the power to a load resistor, wherein an input impedance of the power receiving unit is adjusted according to power consumed by a plurality of receivers. Therefore, power transmission efficiency of the wireless power receiver and transmitter can be improved.
摘要:
Disclosed is a wireless power transmitting and receiving device which includes a wireless power receiving device comprising a receiving coil configured to receive a non-radiated electromagnetic wave; and a frequency adjusting unit configured to adjust a resonant frequency of the receiving coil and a wireless power transmitting device comprising a transmission coil configured to generate a non-radiated electromagnetic wave by magnetic induction with a power coil; and a frequency adjusting unit configured to adjust a resonant frequency of the transmission coil. The frequency adjusting unit adjusts a resonant frequency of the receiving coil by closing a surroundings of the receiving coil by a magnetic sheet. The frequency adjusting unit adjusts a resonant frequency of the transmission coil by inserting a magnetic sheet in the transmission coil.
摘要:
A power transmitter includes a signal processor that externally obtains a reception power state signal depending on variation of a distance between transmission and reception coil units, a modulation controller configured to a modulation frequency for selecting a frequency band having maximum power transmission performance, based on the reception power state signal, a power signal generator that generates a power signal, and a modulator that modulates the power signal in response to the modulation frequency, the reception coil unit being configured to transmit the modulated signal. A power receiver includes a reception coil unit that receives a power signal, a power generator that generates power by receiving the power signal from the reception coil unit, and a signal generator that generates a reception power state signal depending on the generated power level and transmits the latter signal to a transmission coil unit corresponding to the reception coil unit.
摘要:
Provided are a bolometer structure, an infrared detection pixel employing the bolometer structure, and a method of fabricating the infrared detection pixel.The infrared detection pixel includes a substrate including a read-out integrated circuit (ROIC) and on which a reflection layer for reflecting infrared light is stacked, a bolometer structure formed to be spaced apart from the substrate and including a temperature-sensitive resistive layer, a first metal layer formed in a pattern on one surface of the temperature-sensitive resistive layer, a second metal layer formed in a pattern complementary to the pattern of the first metal layer on the other surface of the temperature-sensitive resistive layer in order to complementarily absorb infrared light, and an insulating layer formed between the temperature-sensitive resistive layer and the first metal layer, and a metal pad receiving a change in resistance of the temperature-sensitive resistive layer according to infrared light absorbed by the first metal layer and the second metal layer from the second metal layer, and transferring the change in resistance to the ROIC.Thus, it is possible to improve responsivity, and implement a simple bolometer structure robust against stress. Consequently, process yield can be improved, and the volume, weight, price, etc., of application products can be reduced by reducing the volume of a bolometer structure.