摘要:
An information magnification system for providing enhanced display information for a display system for a vehicle. The display system is of a type that includes a first display and a second display. The information magnification system includes a user interface for providing the capability for a user to select a magnification zone of interest on the first display of the vehicle. An information magnification electronics subsystem is associated with the user interface and with the first and second displays to enable the selected magnification zone to be presented on the second display appearing to be behind the physical surface of the second display at a selected distance, thus providing the capability for the user to maintain a far field of focus.
摘要:
Present novel and non-trivial methods for presenting traffic information are disclosed. In a first method, data representative of ownship position, first traffic, and second traffic are received by a traffic symbology generator (“TSG”). The traffic is divided into zones and a correlation between the targets of the traffic is determined. A traffic symbology data set is generated by the TSG based upon the results of the correlation(s). In a second method, data representative of ownship position and first traffic, runway references, and a selectable display range are received by the TSG. The traffic is divided into zones, and a traffic symbology data set is generated by the TSG thereafter. In a third method, data representative of ownship position and first traffic are received by the TSG. The traffic is divided into zones, and a traffic symbology data set is generated by the TSG thereafter.
摘要:
A method and apparatus for converting electronic display aeronautical chart data to aeronautical chart data that is tailored for an avionics display is disclosed. The method and apparatus received by a data processing unit, electronic display aeronautical chart data. The color palette of the electronic display aeronautical chart data is then remapped to improve viewability on the avionics quality display. Finally, signals representative of the remapped colors are sent to the avionics quality display.
摘要:
The present example a vertical profile display system with enhanced temporal depiction of navigation information. Such a display, or user interface, may advantageously display information relating to the terrain an aircraft is traveling through based on time ahead of the aircraft to a terrain feature or event, rather than distance to the feature or event. Time to a particular feature may typically be displayed with altitude of the aircraft displayed on the Y-axis. However in alternative examples other types of displays, such as three dimensional displays and the like may be substituted for a two dimensional Cartesian display.
摘要:
A present novel and non-trivial system, module, and method for presenting surface symbology on an aircraft display unit are disclosed. Symbology image data representative of an image depicting a runway highlighter adjacent to the assigned runway is generated by a symbology generator based upon assigned runway information and airport surface information provided by a flight management data source and the navigation reference data source, respectively. Such runway highlighter comprises a plurality of runway edge highlighters and a plurality of chevrons pointing in the direction of the assigned runway. The image could include one or more directional runway identifiers. Additionally, the generated image could include the depiction of township location, a line-up distance docking indicator, and/or a groundspeed indicator based upon information provided by a navigation data source. Additionally, the generated image could include the depiction of a wind barb based upon information provided by a weather data source.
摘要:
In one aspect, the flight display system comprises a navigation map that includes a time window for a required time of arrival (RTA) waypoint. The time window has a proximal end indicating the aircraft's position at the RTA using a defined lowest speed and a distal end indicating the aircraft's position at the RTA using a defined highest speed. In another aspect, a pop-up time map displays flight plan waypoints mapped out along a time line adjacent to a plurality of time markers. The waypoint scrolls along the time line during flight. In another aspect, the flight display system includes a full format time map for displaying at least one flight plan waypoint mapped out along a time line adjacent to a plurality of time markers. In another broad aspect, a time/bearing map includes a plurality of concentric “range” rings corresponding to selected times in the future; a plurality of radially spaced bearing ticks positioned at selected locations about the concentric rings; and, a relative time ring presentable about a central axis of, and internal to, the concentric rings. The relative time ring represents a fixed increment in time. Selected waypoints are presentable at their relative bearing to the airplane and at their range (in time) from the airplane.
摘要:
A present novel and non-trivial system, device, and method for presenting instrument approach procedure (“IAP”) advisory information to a pilot of an aircraft are disclosed. An advisory generator (“AG”) is programmed to retrieve or receive flight information representative of the current position of the aircraft, a designated airport, and at least one published IAP; weather minima data corresponding to each IAP; and one or more IAP suitability factors from a weather data source, a NOTAM data source, and/or an aircraft performance data source. The AG determines the suitability or availability of each published IAP, disables the pilot's selectability of each unsuitable or unavailable published IAP, and generates advisory data representative of information advising the pilot of the unsuitable or unavailable published IAP(s). Additionally, the AG is programmed to receive a pilot's override of an unsuitable or unavailable published IAP and enable the overridden unsuitable or unavailable IAP.
摘要:
A present novel and non-trivial system, apparatus, and method is disclosed for presenting a flight director-dependent highway in the sky (“HITS”) pathway on an aircraft display unit. A processor receives flight plan data and flight director data, generates HITS data set representative of a flight director-dependent HITS pathway using flight plan data and flight director data, and provides the HITS data set to a display system for presentation of the flight director-dependent HITS pathway on a tactical display unit. Flight plan data provided to the processor may comprise of data sourced by a navigation system or HITS pathway data generated independently of flight director data. When presented on a tactical display unit, the flight director-dependent HITS pathway may be depicted with the flight director, where the proximal end of the HITS pathway aligns with the flight director.
摘要:
Present novel and non-trivial systems and methods for positioning a heading-based image within a track-based image and for generating steering commands for a forward-looking image capture device of an enhanced vision system (“EVS”). The positioning system is comprised of a source of navigation data, a source of first image data representative of a track-based image, a source of second image data representative of a heading-based image, and an avionics system processor (“ASP”) configured to receive the navigation data, the first image data, and the second image data, determine image positioning data, and merge the first image data with the second image data as a function of the image positioning data. The steering commands generating system is comprised of a source of navigation data, the ASP configured to generate steering command data commensurate to a wind correction angle, and the EVS configured to receive the steering data.
摘要:
The present examples provide circuits, systems, processes, and the like for providing precision course guidance, typically for improved positive course guidance below published minimum descent altitude or decision altitude, including just in time calculations of obstacle free flight paths. The calculated flight path may be presented in the context of a synthetic scene of the environment surrounding the aircraft. To provide precision course guidance, exemplary avionics systems, processes and the like, as described below may be utilized.