Abstract:
A charged state detecting apparatus for a secondary battery is provided, which can suppress deterioration in the accuracy of detecting a charged state, such as an SOC, the deterioration being caused by variation of a polarization state of a battery. The charged state detecting apparatus stabilizes an amount of polarization of the battery, stops power generation upon confirmation of the stabilization of the polarization amount, and sufficiently alters the current of the battery to sample a required number of data pairs of voltage and current of the battery. Using these data pairs, the charged state detecting apparatus detects a charged state, such as the SOC, of the battery.
Abstract:
An apparatus is provided to calculate a quantity indicating a charged state of an on-vehicle battery. The battery powers a starter starting up an on-vehicle engine. In the apparatus, a plurality of pairs of data consisting of current and voltage of the battery are acquired at predetermined sampling intervals during a cranking period of the engine in response to starting up the starter. At intervals, a value of an internal resistance of the battery is calculated based on the plurality of pairs of data of current and voltage. The internal resistance is one kind of the charged-state indicating quantity. An open voltage difference is calculated, which is a difference between a pseudo circuit-open voltage of the battery given before starting up the starter and a pseudo circuit-open voltage of the battery given after the cranking period. The value of the internal resistance is corrected using the open voltage difference.
Abstract:
A charged state detecting apparatus for a secondary battery is provided, which can suppress deterioration in the accuracy of detecting a charged state, such as an SOC, the deterioration being caused by variation of a polarization state of a battery. The charged state detecting apparatus stabilizes an amount of polarization of the battery, stops power generation upon confirmation of the stabilization of the polarization amount, and sufficiently alters the current of the battery to sample a required number of data pairs of voltage and current of the battery. Using these data pairs, the charged state detecting apparatus detects a charged state, such as the SOC, of the battery.
Abstract:
An apparatus is provided to calculate a quantity indicating a charged state of an on-vehicle battery. The battery powers a starter starting up an on-vehicle engine. In the apparatus, a plurality of pairs of data consisting of current and voltage of the battery are acquired at predetermined sampling intervals during a cranking period of the engine in response to starting up the starter. At intervals, a value of an internal resistance of the battery is calculated based on the plurality of pairs of data of current and voltage. The internal resistance is one kind of the charged-state indicating quantity. An open voltage difference is calculated, which is a difference between a pseudo circuit-open voltage of the battery given before starting up the starter and a pseudo circuit-open voltage of the battery given after the cranking period. The value of the internal resistance is corrected using the open voltage difference.
Abstract:
An apparatus is provided to control a power voltage on a power-supplying line extending from a generator and connecting to a battery and eclectic loads. The apparatus is mounted on a vehicle and comprises a detecting device, a calculator, and a controller. The detecting device detects pairs of voltage and current of the battery. The calculator calculating a control current on the basis of the detected pairs of voltage and current and a target voltage for the power voltage. The pairs of voltage and current are used to calculate an internal resistance and/or a regression line of the battery. The controller controlling a charge and discharge current of the battery on the basis of the control current so that the power voltage is controlled to the target voltage.
Abstract:
An apparatus is provided to control a power voltage on a power-supplying line extending from a generator and connecting to a battery and eclectic loads. The apparatus is mounted on a vehicle and comprises a detecting device, a calculator, and a controller. The detecting device detects pairs of voltage and current of the battery. The calculator calculating a control current on the basis of the detected pairs of voltage and current and a target voltage for the power voltage. The pairs of voltage and current are used to calculate an internal resistance and/or a regression line of the battery. The controller controlling a charge and discharge current of the battery on the basis of the control current so that the power voltage is controlled to the target voltage.
Abstract:
A light source device includes a reflector that reflects light received from an arc tube toward an illumination receiving area, and a housing that houses the reflector to form a space through which cooling air for cooling the arc tube flows. The housing has three delivery ports disposed side by side as ports from each of which the cooling air is delivered into the space. A first delivery port included in the three delivery ports is located such that the center of the first delivery port is disposed substantially at a position aligned with the optical axis of the arc tube. Second and third delivery ports included in the three delivery ports are disposed in the vicinity of one and the other sides of the first delivery port, respectively, with respect to the optical axis.
Abstract:
It is required for a gas turbine combustor to exhaust low NOx. The gas turbine combustor is provided with a combustion tube which has a cooling passage through which cooling air flows in a double wall structure. The cooling passage has a main cooling air supply opening opened to a side of a combustion zone. The cooling air supplied from the main cooling air supply opening is guided to a direction along an inner wall surface of the combustion tube by a guide. The cooling air flows through the cooling passage inside the combustion tube, and then is reused for film cooling along the inner wall surface. Thus, it is possible to save cooling air. Therefore, a more part of the air supplied from a compressor can be used as air for combustion and it becomes possible to exhaust low NOx.
Abstract:
An asynchronous branching module (102) outputs transfer data received in accordance with a handshake protocol to any of branch destinations. An asynchronous arbitration module (101) merges transfer paths of the transfer data. A congestion detection module (111) receives an arbitration result signal from the asynchronous arbitration module (101) and outputs congestion information indicating presence/absence of congestion to a merge source. A congestion avoiding path calculation module (112) receives the congestion information and exclusively performs a process of storing the congestion information into a congestion information storage memory, and a process of making the asynchronous branching module (102) preferentially select, as a transfer branch destination, a branch destination generating no congestion information indicative of the presence of congestion from branch destinations leading to a destination, on the basis of the congestion information and the destination information of the transfer data.
Abstract:
An engine generator for driving an air motor to energize an engine is provided which reduces an installation space and facility and running costs. The engine generator (EG) is attached to a fire extinguishing facility (14). The fire extinguishing facility is designed to eject unburnable gas supplied from gas containers (11) and comprises an air motor (10) for driving an engine, and a valve unit (12) designed to drive in response to an instruction signal, control a pressure of the unburnable gas from the gas container and supply the pressure controlled unburnable gas to the air motor (10).