Abstract:
An information processing apparatus for extracting a more appropriate representative frame image from moving image data that includes a plurality of frames of image data arranged in a time series includes: an input unit configured to input moving image data; a detecting unit configured to detect a frame image, which includes an image similar to a prescribed image pattern; a tracking unit configured to detect a frame image, which includes an image similar to the image included in the detected frame image; a storage unit configured to store the successive frame images in association with time information; a splitting unit configured to split the moving image data into a plurality of time intervals with starting time and end time of each of one or more image sequences; and an extracting unit configured to extract a representative frame image.
Abstract:
An information processing apparatus includes a plurality of information processing units that are connected in stages. Each of the information processing units comprises a plurality of processing units configured to process information and output a processing result and an integration unit configured to input the processing result of one or a plurality of the processing units and output the processing result after integrating the processing result, and changes a connection relation between the output of the processing result from the processing units and the input to the integration unit.
Abstract:
A face area is detected from an image captured by an image pickup device, pixel values of the image are adjusted based on information concerning the detected face area, a person area is detected from the adjusted image, and the detected face area is integrated with the detected person area. With this configuration, it is possible to accurately detect an object even in a case, for example, where the brightness is varied.
Abstract:
An image processing apparatus includes a region setting unit configured to set a specific region where a reflection may occur in an image, a size setting unit configured to set a size of an object to be detected in association with a position in the image, and a changed region detection unit configured to detect a changed region by comparing a background model and an input image, wherein the changed region detection unit outputs the changed region in the specific region based on the size of the object associated with a position of the changed region, in a case where the changed region extends beyond a boundary of the specific region.
Abstract:
An image processing apparatus includes an input unit configured to input an image, a determining unit configured to determine a foreground area and a background area in the image input by the input unit, an expansion unit configured to expand the foreground area determined by the determining unit, a calculating unit configured to calculate a feature amount of the foreground area expanded by the expansion unit, and a detecting unit configured to detect an object from the image using the feature amount.
Abstract:
An image processing apparatus includes a region setting unit configured to set a specific region where a reflection may occur in an image, a size setting unit configured to set a size of an object to be detected in association with a position in the image, and a changed region detection unit configured to detect a changed region by comparing a background model and an input image, wherein the changed region detection unit outputs the changed region in the specific region based on the size of the object associated with a position of the changed region, in a case where the changed region extends beyond a boundary of the specific region.
Abstract:
A face image is detected for each frame at a predetermined interval in moving image data, and the face image is traced using a frame in which the face image is detected and frames subsequent to the frame. A face sequence including an interval in which the face can be traced and motion velocity vectors of the face indicating a change in the position of the face image in the interval is generated based on the tracing result. Further, camera operation information about when the moving image data is acquired is generated from the frame image of the moving image data. When there is an overlap in the plurality of intervals in which the face images are traced, the face being tracked by the camera is determined using the face sequence and the camera operation information of each of the plurality of face images. The face determined to be tracked is then determined to be a key object.
Abstract:
A face image is detected for each frame at a predetermined interval in moving image data, and the face image is traced using a frame in which the face image is detected and frames subsequent to the frame. A face sequence including an interval in which the face can be traced and motion velocity vectors of the face indicating a change in the position of the face image in the interval is generated based on the tracing result. Further, camera operation information about when the moving image data is acquired is generated from the frame image of the moving image data. When there is an overlap in the plurality of intervals in which the face images are traced, the face being tracked by the camera is determined using the face sequence and the camera operation information of each of the plurality of face images. The face determined to be tracked is then determined to be a key object.
Abstract:
There is provided a management server technology that allows a user to continuously use a business function of a business server without logging in again to the business server, even if the authority of the user to the business server is changed. The business server receives an access from a user terminal, and requests a management server to perform user authentication. In response to the authentication request, the management server determines a future scheduled authority of the user, generates not only authority information at the time of the user authentication, but also a determination result including the future scheduled authority information, and transmits them to the business server. The business server provides the user terminal with a new business function based on the scheduled user authority information, upon expiration of a validity period of the user authority to the current business function.
Abstract:
An image processing apparatus includes a first detecting unit configured to detect an object based on an upper body of a person and a second detecting unit configured to detect an object based on a face of a person. The image processing apparatus determines a level of congestion of objects contained in an input image, selects the first detecting unit when the level of congestion is low, and selects the second detecting unit when the level of congestion is high. The image processing apparatus counts the number of objects detected by the selected first or second detecting unit from the image. Thus, the image processing apparatus can detect an object and count the number of objects with high precision even when the level of congestion is high and the objects tend to overlap one another.