Abstract:
For the purpose of determining a weight concentration of a clay material in a porous medium sample, a specific active surface area of the clay material and an initial specific active surface area of the porous sample are measured. A water solution of the clay material is pumped through the sample and a specific active surface area of the sample of the porous medium is measured after the pumping. Then, the weight concentration of the clay material is calculated.
Abstract:
In order to predict properties of a formation in a near-wellbore area exposed to a drilling mud rheological properties of the drilling mud, of a filtrate of the drilling mud and of a reservoir fluid are determined. Properties of an external mudcake, porosity and permeability of the core sample are determined. A mathematical model of the external mudcake is created. The drilling mud is injected through a core sample and dynamics of pressure drop across the sample and dynamics of a flow rate of a liquid leaving the sample are determined. Using an X-ray micro Computed Tomography a profile of concentration of particles of the drilling mud penetrated into the sample is determined. A mathematical model is developed for the internal mudcake to describe dynamics of changes in concentration of the particles of the drilling mud in a pore space of the core sample. A coupled mathematical model of the internal and the external mudcakes is created and parameters of the mathematical model of the internal mudcake are determined providing matching of simulation results to the experimental data on injection the drilling mud through the core sample and to the concentration profile of the particles of the drilling mud.
Abstract:
In order to predict properties of a formation in a near-wellbore area exposed to a drilling mud rheological properties of the drilling mud, of a filtrate of the drilling mud and of a reservoir fluid are determined. Properties of an external mudcake, porosity and permeability of the core sample are determined. A mathematical model of the external mudcake is created. The drilling mud is injected through a core sample and dynamics of pressure drop across the sample and dynamics of a flow rate of a liquid leaving the sample are determined. Using an X-ray micro Computed Tomography a profile of concentration of particles of the drilling mud penetrated into the sample is determined. A mathematical model is developed for the internal mudcake to describe dynamics of changes in concentration of the particles of the drilling mud in a pore space of the core sample. A coupled mathematical model of the internal and the external mudcakes is created and parameters of the mathematical model of the internal mudcake are determined providing matching of simulation results to the experimental data on injection the drilling mud through the core sample and to the concentration profile of the particles of the drilling mud.
Abstract:
Determining weight concentration of clay in a sample of a porous material, a water-soluble salt of a metal is selected that enters in a selective ion exchange reaction with clay, with the general formula R+M−, where a metal R+ is selected from the group {Ba2+; Sr2+; Tl+; Rb+ . . . }, M− is selected from the group {Cln; NOn; OHn; CH3COO, SO4; . . . } in accordance with the table of solubility of inorganic substances in water. Clay is marked by means of mixing the clay with a water solution of the selected salt of the metal, residues of the salt of the metal that have not interacted with the clay are removed. X-ray fluorescent spectrometry of the marked clay and of the sample is conducted and content of the metal in the marked clay and natural content of the metal in the sample are determined. A water solution of the marked clay is pumped through the sample, the sample is dried and X-ray fluorescent spectrometry of the entire sample or of its individual segments is conducted. Content of the metal in the sample or in each segment is determined and weight concentrations of clay retained in the sample or in each of its segments are determined.