Abstract:
Systems, methods, and apparatus to drive reactive loads are disclosed. An example apparatus to drive a reactive load includes a reactive component in circuit with the reactive load, a first switching element in circuit with the reactive load to selectively hold the reactive load in a first energy state and to selectively allow the reactive load to change from the first energy state to a second energy state, a second switching element in circuit with the reactive load to selectively hold the reactive load in the second energy state and to selectively allow the reactive load to change from the second energy state to the first energy state, and a controller to detect a current in the reactive load, and to control the first and second switching elements to hold the reactive load in the first or the second energy state when the current traverses a threshold.
Abstract:
Devices, methods and systems for determining one or more properties of at least one fluid sample. A tube configured to receive the at least one fluid sample wherein the tube is placed in a pressure housing. Further, an excitation source configured to generate vibration of the tube whereby a circulation of an electrical current along a portion of the tube is subjected to at least one magnetic field produced by at least one magnet. Further still, at least one vibration sensor that converts vibrations of the tube into a measurement signal. Finally, a processor that receives the measurement signal determines a resonant frequency from the measurement signal using a frequency measuring device to determine a property of the one or more properties of the at least one sample fluid.
Abstract:
Devices, methods and systems for determining one or more properties of at least one fluid sample. A tube configured to receive the at least one fluid sample wherein the tube is placed in a pressure housing. Further, an excitation source configured to generate vibration of the tube whereby a circulation of an electrical current along a portion of the tube is subjected to at least one magnetic field produced by at least one magnet. Further still, at least one vibration sensor that converts vibrations of the tube into a measurement signal. Finally, a processor that receives the measurement signal determines a resonant frequency from the measurement signal using a frequency measuring device to determine a property of the one or more properties of the at least one sample fluid.
Abstract:
Systems, methods, and apparatus to drive reactive loads are disclosed. An example apparatus to drive a reactive load includes a reactive component in circuit with the reactive load, a first switching element in circuit with the reactive load to selectively hold the reactive load in a first energy state and to selectively allow the reactive load to change from the first energy state to a second energy state, a second switching element in circuit with the reactive load to selectively hold the reactive load in the second energy state and to selectively allow the reactive load to change from the second energy state to the first energy state, and a controller to detect a current in the reactive load, and to control the first and second switching elements to hold the reactive load in the first or the second energy state when the current traverses a threshold.
Abstract:
A method for regulating output of a high voltage generator includes monitoring a voltage output of the generator and comparing it to a voltage setpoint to generate an error signal. A load on the generator is monitored to generate a load signal. The load signal is conducted to a feedforward signal generator. The feedforward signal generator is configured to produce a feedforward signal corresponding to the load and to at least one parameter related to an output impedance of the high voltage generator. The error signal is conducted to a high voltage regulation loop. The control loop output and the feedforward signal generator output are coupled to a driver for the high voltage generator.
Abstract:
A method for regulating output of a high voltage generator includes monitoring a voltage output of the generator and comparing it to a voltage setpoint to generate an error signal. A load on the generator is monitored to generate a load signal. The load signal is conducted to a feedforward signal generator. The feedforward signal generator is configured to produce a feedforward signal corresponding to the load and to at least one parameter related to an output impedance of the high voltage generator. The error signal is conducted to a high voltage regulation loop. The control loop output and the feedforward signal generator output are coupled to a driver for the high voltage generator.