Abstract:
A method for identifying fractures from measurements made by a multi-axial electromagnetic induction tool in a wellbore traversing subsurface formations includes determining a value of a fracture orientation indicator from in line components of the multi-axial electromagnetic inducion measurements mode transverse to a tool axis, and parallel to the tool axis. The tool axis is sub-stantially parallel to a bedding plane of the subsurface formations. A value of a vertical fracture indicator is determined using the in line components of the multi-axial electromagnetic induction measurements made transverse to the tool axis, and parallel to the tool axis.
Abstract:
A method for estimating fracture aperture from multi-axial electromagnetic induction measurements made in a wellbore includes determining a fracture indicator and a fracture orientation indicator. The value of the fracture indicator is determined from components of the measurements made transverse to the tool axis. A relationship between the value of the fracture indicator and the fracture aperture for the subsurface formation is determined by estimating the fracture indicator using a plurality of values of fracture aperture and a resistivity of drilling fluid in the wellbore over a background formation with estimated horizontal resistivity and vertical resistivity. The fracture aperture is determined using the determined fracture indicator and the determined relationship.
Abstract:
A two-step inversion method for computing multi-layer subterranean formation properties includes processing gain compensated electromagnetic measurement quantities using a first inversion to compute a corresponding set of borehole corrected gain compensated measurement quantities. The first inversion includes a mathematical model of the tool and the borehole in a uniform, anisotropic formation. The set of borehole corrected gain compensated measurement quantities are then processed using a second inversion to compute multi-layer anisotropic formation properties. The second inversion includes a 1D inversion employing a point dipole model and a multi-layer formation model.
Abstract:
A method for characterizing fractures traversing a wellbore includes input to a computer multiaxial electromagnetic induction measurements corresponding to measurements made along two mutually orthogonal magnetic dipole moment axes perpendicular to an axis of the wellbore. The measurements correspond to at least one receiver spacing from a transmitter. The measurements represent induced voltage in a receiver having a same dipole moment direction as a dipole moment direction of a transmitter. A first derivative with respect to wellbore depth of the multiaxial electromagnetic induction measurements is calculated. At least one peak and an amplitude thereof of the first derivatives is calculated. The peak and the amplitude are used to determine a location and an aperture of at least one fracture traversing the wellbore.
Abstract:
A method for making downhole electromagnetic logging measurements includes using an electromagnetic measurement tool to acquire the measurements while rotating in a subterranean wellbore. Received electromagnetic waves are processed to obtain harmonic voltage coefficients, ratios of which are in turn further processed to compute gain compensated measurement quantities. The gain compensated measurement quantities are further processed to compute at least one of an apparent formation azimuth of the formation through which the wellbore traverses, an apparent tool eccentering azimuth, and an eccentering distance of the logging tool in the wellbore.
Abstract:
A method for correcting formation properties due to effects of a borehole is disclosed. The method includes obtaining voltage measurements using a logging tool disposed in a borehole penetrating a subsurface formation. The method further includes using a processor to: determine a tensor for the formation using the voltage measurement. For a given set of parameters, the processor determines, based upon the voltage measurements, a parameter value for each parameter in a subset of the set of parameters. The method further uses the processor to compute a borehole-inclusive modeled tensor that includes the effects of the borehole using the parameter values, optimize the parameter values using the determined tensor and the borehole-inclusive tensor, compute an optimized tensor using the optimized parameter values, compute a borehole corrected tensor using the optimized tensor, and determine at least one borehole corrected formation property using at least one of the borehole corrected tensor or the optimized parameter values.
Abstract:
A method for correcting formation properties due to effects of a borehole is disclosed. The method includes obtaining voltage measurements using a logging tool disposed in a borehole penetrating a subsurface formation. The method further includes using a processor to: determine a tensor for the formation using the voltage measurement. For a given set of parameters, the processor determines, based upon the voltage measurements, a parameter value for each parameter in a subset of the set of parameters. The method further uses the processor to compute a borehole-inclusive modeled tensor that includes the effects of the borehole using the parameter values, optimize the parameter values using the determined tensor and the borehole-inclusive tensor, compute an optimized tensor using the optimized parameter values, compute a borehole corrected tensor using the optimized tensor, and determine at least one borehole corrected formation property using at least one of the borehole corrected tensor or the optimized parameter values.
Abstract:
A method for drilling a wellbore includes drilling a well along a path substantially along a bedding direction of a selected subsurface formation having at least one substantially vertical fracture therein. A direction of the at least one substantially vertical fracture is determined with respect to a direction of the prior to drilling therethrough. A direction of the path is adjusted so that the well will intersect the at least one substantially vertical fracture substantially perpendicularly to the direction.
Abstract:
A method for making downhole electromagnetic logging measurements includes using an electromagnetic measurement tool to acquire the measurements while rotating in a subterranean wellbore. Received electromagnetic waves are processed to obtain harmonic voltage coefficients, ratios of which are in turn further processed to compute gain compensated measurement quantities. The gain compensated measurement quantities are further processed to compute at least one of an apparent formation azimuth of the formation through which the wellbore traverses, an apparent tool eccentering azimuth, and an eccentering distance of the logging tool in the wellbore.
Abstract:
A method for identifying fractures from measurements made by a multi-axial electromagnetic induction tool in a wellbore traversing subsurface formations includes determining a value of a fracture orientation indicator from in line components of the multi-axial electromagnetic induction measurements made transverse to a tool axis, and parallel to the tool axis. The tool axis is substantially parallel to a bedding plane of the subsurface formations. A value of a vertical fracture indicator is determined using the in line components of the multi-axial electromagnetic induction measurements made transverse to the tool axis, and parallel to the tool axis.