Abstract:
A fiber optic distributed vibration system for detecting seismic signals in an earth formation is provided. The system includes a fiber optic cable deployed in a borehole that extends into the earth formation and which is configured to react along its length to a seismic wave incident on the fiber optic cable from outside the borehole. An optical source launches an optical signal into the fiber optic cable while the seismic wave is incident thereon. A receiver detects coherent Rayleigh noise (CRN) produced in response to the optical signal. A processing circuit processes the detected CRN signal to determine characteristics of the earth formation.
Abstract:
A fiber optic distributed vibration system for detecting seismic signals in an earth formation is provided. The system includes a fiber optic cable deployed in a borehole that extends into the earth formation and which is configured to react along its length to a seismic wave incident on the fiber optic cable from outside the borehole. An optical source launches an optical signal into the fiber optic cable while the seismic wave is incident thereon. A receiver detects coherent Rayleigh noise (CRN) produced in response to the optical signal. A processing circuit processes the detected CRN signal to determine characteristics of the earth formation.
Abstract:
A fiber optic distributed vibration system for detecting seismic signals in an earth formation is provided. The system includes a fiber optic cable deployed in a borehole that extends into the earth formation and which is configured to react along its length to a seismic wave incident on the fiber optic cable from outside the borehole. An optical source launches an optical signal into the fiber optic cable while the seismic wave is incident thereon. A receiver detects coherent Rayleigh noise (CRN) produced in response to the optical signal. A processing circuit processes the detected CRN signal to determine characteristics of the earth formation.
Abstract:
Systems, apparatuses and methods for neural network signal processing of microseismic events. A series of sensors are disposable in at least one first well positioned about a second well disposed in a subterranean formation. The series of sensors obtain a data signal measurement including noise events and microseismic acoustic emission events. A processor includes a first neural network. The processor may remove the noise events from the data signal measurement and determine with the first neural network an arrival time for each microseismic acoustic emission event. An interface can output the arrival time for each microseismic acoustic emission event.
Abstract:
A fiber optic distributed vibration system for detecting seismic signals in an earth formation is provided. The system includes a fiber optic cable deployed in a borehole that extends into the earth formation and which is configured to react along its length to a seismic wave incident on the fiber optic cable from outside the borehole. An optical source launches an optical signal into the fiber optic cable while the seismic wave is incident thereon. A receiver detects coherent Rayleigh noise (CRN) produced in response to the optical signal. A processing circuit processes the detected CRN signal to determine characteristics of the earth formation.