Abstract:
A flow sensing apparatus includes a light source, at least one fiber Bragg grating and at least one optical fiber. The apparatus may be inserted into a flowing fluid stream, and the fiber Bragg grating detects the vortices of the Von Karman street in the wake of the apparatus. The fiber Bragg grating reflects light emitted from the light source, and the spectral nature of the reflected light provides information concerning the fluid velocity in the flowing stream.
Abstract:
Improved equipment and methods for determining the waiting-on-cement time after a cementing operation involve an optic-fiber coil that immersed in the cement slurry downhole. The intensity of a reflected light signal from the coil is monitored versus time. Attenuation of the reflected-light intensity corresponds to the development of gel strength, allowing operators to unambiguously determine when wellbore operations may recommence after a cement job.
Abstract:
A system for wireline service planning and advising includes a receiver, one or more computing system processors, and a transmitter. The receiver is configured to receive, from a user of the system, an objective parameter for interpreting a state of a well barrier. The one or more computing system processors is in communication with the receiver and configured to generate a plurality of candidate services based on the objective parameter and a model of the well barrier, each candidate service specifying sensor data to be acquired using wireline tools, select at least one wireline service from the wireline candidate services based on a selection logic or input by the user, and generate an execution plan specifying operational parameters of the selected wireline service. The transmitter is in communication with the one or more computing system processors and configured to transmit the execution plan to execute the selected wireline service at a wellsite.
Abstract:
Methods and devices for obtaining well log data with reduced coherent noise are provided. One such method may include placing a downhole tool into a well to obtain a set of unfiltered well log data that includes individual measurements obtained at various azimuthal angles within the well. Some of the unfiltered well log data may represent eccentered well log data obtained while the downhole tool is eccentered in the well. The individual measurements of the eccentered well log data may have delays that vary as a function of the azimuthal angle at which they were obtained. By comparing the measurements of the eccentered well log data, a common pattern independent of delay, representing coherent noise, may be identified. The common pattern may be subtracted from the well log data to produce filtered well log data that is less noisy than the unfiltered well log data.
Abstract:
A method for detecting an object in a borehole includes acquiring at least two ultrasonic logs of a borehole section. Each of the ultrasonic logs includes ultrasonic measurements taken at a plurality of tool azimuths of a plurality of depths including a target depth. The method also includes inferring a VDL image relative to the target depth for each of the ultrasonic logs. Further, the method includes aligning the VDL images. Further still, the method includes merging the aligned VDL images into a high-resolution VDL image. Even further, the method includes detecting an object present in the borehole based on the high-resolution VDL image.
Abstract:
A method for detecting an object in a borehole includes acquiring at least two ultrasonic logs of a borehole section. Each of the ultrasonic logs includes ultrasonic measurements taken at a plurality of tool azimuths of a plurality of depths including a target depth. The method also includes inferring a VDL image relative to the target depth for each of the ultrasonic logs. Further, the method includes aligning the VDL images. Further still, the method includes merging the aligned VDL images into a high-resolution VDL image. Even further, the method includes detecting an object present in the borehole based on the high-resolution VDL image.
Abstract:
A system for wireline service planning and advising includes a receiver, one or more computing system processors, and a transmitter. The receiver is configured to receive, from a user of the system, an objective parameter for interpreting a state of a well barrier. The one or more computing system processors is in communication with the receiver and configured to generate a plurality of candidate services based on the objective parameter and a model of the well barrier, each candidate service specifying sensor data to be acquired using wireline tools, select at least one wireline service from the wireline candidate services based on a selection logic or input by the user, and generate an execution plan specifying operational parameters of the selected wireline service. The transmitter is in communication with the one or more computing system processors and configured to transmit the execution plan to execute the selected wireline service at a wellsite.
Abstract:
A system for wireline service planning and advising includes a receiver, one or more computing system processors, and a transmitter. The receiver is configured to receive, from a user of the system, an objective parameter for interpreting a state of a well barrier. The one or more computing system processors is in communication with the receiver and configured to generate a plurality of candidate services based on the objective parameter and a model of the well barrier, each candidate service specifying sensor data to be acquired using wireline tools, select at least one wireline service from the wireline candidate services based on a selection logic or input by the user, and generate an execution plan specifying operational parameters of the selected wireline service. The transmitter is in communication with the one or more computing system processors and configured to transmit the execution plan to execute the selected wireline service at a wellsite.
Abstract:
A system includes an acoustic logging tool including a transducer configured to: emit a first acoustic pulse in a first direction toward a first acoustic surface; measure a first acoustic signal, wherein the first acoustic signal includes a coherent noise component and a first echo component, wherein the first echo component is due at least in part to an interaction of the first acoustic pulse with the first acoustic surface; emit a second acoustic pulse in a second direction, wherein the second direction is at least partly directed away from the first acoustic surface; and measure a second acoustic signal, wherein the second acoustic signal includes substantially only the coherent noise component. The system also includes a data processing system that includes a processor configured to remove the measurement of the second acoustic signal from the measurement of the first acoustic signal to reduce coherent noise.
Abstract:
A system includes an acoustic logging tool including a transducer configured to: emit a first acoustic pulse in a first direction toward a first acoustic surface; measure a first acoustic signal, wherein the first acoustic signal includes a coherent noise component and a first echo component, wherein the first echo component is due at least in part to an interaction of the first acoustic pulse with the first acoustic surface; emit a second acoustic pulse in a second direction, wherein the second direction is at least partly directed away from the first acoustic surface; and measure a second acoustic signal, wherein the second acoustic signal includes substantially only the coherent noise component. The system also includes a data processing system that includes a processor configured to remove the measurement of the second acoustic signal from the measurement of the first acoustic signal to reduce coherent noise.