Abstract:
Disclosed are a system, apparatus, and method for optical fiber well deployment in seismic optical surveying. Embodiments of this disclosure may include methods of deploying a spooled optical fiber distributed sensor into the wellbore integrated in a ballast or weight for a seismic optic tool, to achieve deployment of a lightweight disposable fiber optic cable against the wellbore walls via gravity. The method may further include unspooling the spooled optical fiber distributed sensor and using the optical fiber as a distributed seismic receiver. Once the fiber optic distributed sensor is deployed according to methods of the present disclosure, surveys may be obtained and processed by various methods.
Abstract:
A measurement apparatus for non-invasively logging the flow of perforations in a well casing lining a wellbore. The measurement apparatus includes a plurality of transducers arranged adjacent an outer surface of the measurement apparatus and at predefined azimuthal angular positions with respect to a longitudinal axis of the measurement apparatus, where the transducers are adapted to transmit and detect an acoustic pulse, and where each transducer is arranged at a different azimuthal angle with respect to each of the remaining transducers.
Abstract:
Apparatus and methods for optical and electrical sensing different phases of a multiphase fluid. The apparatus includes a cylindrical member formed with an optically transparent material including a first end with a shaped tip and a second end operable to receive an optical conductor. The apparatus also includes first and second electrodes disposed on the cylindrical member operable to receive first and second electrical conductors, respectively.
Abstract:
A measurement apparatus for non-invasively logging the flow of perforations in a well casing lining a wellbore. The measurement apparatus includes a plurality of transducers arranged adjacent an outer surface of the measurement apparatus and at predefined azimuthal angular positions with respect to a longitudinal axis of the measurement apparatus, where the transducers are adapted to transmit and detect an acoustic pulse, and where each transducer is arranged at a different azimuthal angle with respect to each of the remaining transducers.
Abstract:
Apparatus and methods for optical and electrical sensing different phases of a multiphase fluid. The apparatus includes a cylindrical member formed with an optically transparent material including a first end with a shaped tip and a second end operable to receive an optical conductor. The apparatus also includes first and second electrodes disposed on the cylindrical member operable to receive first and second electrical conductors, respectively.
Abstract:
A flow sensing apparatus includes a light source, at least one fiber Bragg grating and at least one optical fiber. The apparatus may be inserted into a flowing fluid stream, and the fiber Bragg grating detects the vortices of the Von Karman street in the wake of the apparatus. The fiber Bragg grating reflects light emitted from the light source, and the spectral nature of the reflected light provides information concerning the fluid velocity in the flowing stream.
Abstract:
Disclosed are a system, apparatus, and method for optical fiber well deployment in seismic optical surveying. Embodiments of this disclosure may include methods of deploying a spooled optical fiber distributed sensor into the wellbore integrated in a ballast or weight for a seismic optic tool, to achieve deployment of a lightweight disposable fiber optic cable against the wellbore walls via gravity. The method may further include unspooling the spooled optical fiber distributed sensor and using the optical fiber as a distributed seismic receiver. Once the fiber optic distributed sensor is deployed according to methods of the present disclosure, surveys may be obtained and processed by various methods.
Abstract:
The present disclosure introduces a downhole tool conveyable within a tubular within a wellbore extending into a subterranean formation. The downhole tool includes a body and a member having a first end and a second end, wherein the first end is rotatably coupled to the body. A spectrometry sensor is disposed proximate the second end of the member. Embodiments also include a fluid separating component shaped such that a heavier fluid from the fluid flowing along the downhole tool is drawn away from the spectrometry window to reduce window contamination from fluid droplets, particles, and/or liquids.
Abstract:
Improved equipment and methods for determining the waiting-on-cement time after a cementing operation involve an optic-fiber coil that immersed in the cement slurry downhole. The intensity of a reflected light signal from the coil is monitored versus time. Attenuation of the reflected-light intensity corresponds to the development of gel strength, allowing operators to unambiguously determine when wellbore operations may recommence after a cement job.
Abstract:
The present disclosure introduces a downhole tool conveyable within a tubular within a wellbore extending into a subterranean formation. The downhole tool includes a body and a member having a first end and a second end, wherein the first end is rotatably coupled to the body. A spectrometry sensor is disposed proximate the second end of the member. Embodiments also include a fluid separating component shaped such that a heavier fluid from the fluid flowing along the downhole tool is drawn away from the spectrometry window to reduce window contamination from fluid droplets, particles, and/or liquids.