Abstract:
Camera heads configured to provide digitally articulated images or video, at adjustable resolutions and/or offsets and orientations, to a camera control unit (CCU) or other electronic computing system for display, storage, and/or transmission to other systems are disclosed.
Abstract:
Typical transceivers have multiple near-end and multiple far-end crosstalk cancellation filters. Crosstalk cancellation is one of the largest contributors to power dissipation in the DSP portion of high speed Ethernet transceivers. By detecting the cable type, a transceiver could automatically turn off its crosstalk cancellation filters when driving shielded twisted pair (STP) cables and substantially reduce the overall power dissipation in this configuration. Adaptive digital crosstalk cancellers automatically adjust the coefficients of a digital filter to match the coupling function between two channels. The impulse response of an optimal crosstalk cancellation filter can be used to determine a metric indicating the amount of coupling between the two channels. STP cables will have a much lower amount of coupling between wire-pairs than unshielded twisted pair cables.
Abstract:
Communication devices coupled via a communication link may comprise physical layer devices that may be operable to determine presence of a received signal and to mitigate noise in the signal prior to processing and/or validating the signal. Analog and/or digital signal processing may be utilized to process the signal and/or mitigate noise in the signal. Noise mitigation may comprise near-end crosstalk cancelling and/or echo cancelling and/or may utilize local transmit signal information. Subsequent to noise mitigation, samples of the noise reduced signal may be accumulated and/or an average signal strength and/or average signal power level may be determined. The average signal strength and/or average signal power level may be compared to one or more thresholds which may be configurable and/or programmable.
Abstract:
One or both link partners coupled via an Ethernet link may comprise a PHY device operable to initiate a wake-up interval. The PHY device may monitor parameters that may indicate Ethernet link status. Exemplary parameters may comprise a timer, communication performance metrics and/or configuration parameters. From a low power mode, the PHY device may generate a wake state idle symbol based on the monitoring and may communicate it to a local and/or a remote MAC. The local and/or remote MAC may establish a wake-up interval. The wake-up interval may comprise synchronization, circuit adaption and updating of communication parameters, which may enable control of noise cancellation functions and/or equalization functions. One or both of the link partners may transition to a low power mode after the wake-up interval and/or to an active state after the wake-up interval.
Abstract:
A system, method and apparatus for reducing a power consumed by a physical layer device (PHY). A length of a cable connecting the PHY to a link partner is determined. Based on the length, power provided to one or more components of the PHY, or any portion thereof, is reduced. The power provided is reduced while maintaining a level of reliability specified by a protocol governing operation of the PHY. The length can be determined using time-domain reflectometry (TDR) techniques. Any portion of an echo cancellation filter, a crosstalk filter, an equalizer, a precoder, an analog-to-digital converter (ADC), a digital-to-analog converter (DAC), a forward error correction (FEC) decoder and/or an FEC coder can be powered-down or power-optimized to reduce the overall power consumed by the PHY. The protocol governing operation of the PHY can be IEEE 802.3.
Abstract:
Aspects of a method and system for adaptive tone cancellation for mitigating the effects of interference are provided. In this regard, an Ethernet PHY may receive one or more signals via a corresponding one or more physical channels and generate one or more estimate signals, each of which approximates interference present in a corresponding one of the received signals. The Ethernet PHY may subtract each one of the estimate signals from a corresponding one of the received signals. The subtracting may occur at the input of one or more slicers in the Ethernet PHY. The received signals may be processed via one or more equalizers in the Ethernet PHY. A decision output of a slicer in the Ethernet PHY may be subtracted from one of the said one or more received signals, and a signal resulting from the subtraction may be utilized to generate the one or more estimate signals.
Abstract:
Certain aspects for the start-up procedure of transceivers supporting higher data rates over twisted-pair copper cabling are provided for 10 Gbit/sec Ethernet links (10GBASE-T). During a PMA (physical medium attachment) training period of the start-up procedure, long PMA training frames are exchanged periodically between link partners. A significant portion of each PMA training frame consists of known pseudo random sequences simultaneously transmitted over four wire pairs. PMA training frames include an InfoField for exchanging parameters and control information between link partners. For example, the InfoField's payload comprises fields for indicating current transmit power backoff (PBO), next PBO, requested PBO, transition count, control information, and for communicating precoder coefficients. Information in InfoFields is repeated and is not necessary that a link partner decodes every InfoField. For example, by occasionally reading the transition count, a link partner can determine when a change in transmit PBO and/or a state transition is to occur.
Abstract:
An Ethernet physical layer device using time division duplex. A time division duplex frame can be defined with uplink and downlink transmission periods. These defined uplink and downlink transmission periods can be adjusted based on bandwidth and latency considerations on the network link.
Abstract:
A system and method for physical layer device enabled power over Ethernet (PoE) processing. A digital PoE control module is included within a physical layer device and is designed to complement an analog PoE control module within a power sourcing equipment. The inclusion of the digital PoE control within the physical layer device reduces the complexity of the power sourcing equipment without sacrificing PoE control features.
Abstract:
A system and method for enhanced physical layer device autonegotiation. The autonegotiation process typically identifies the highest common denominator amongst various standardized modes of operation. Enhanced autonegotiation can be used to select a mode of operation that is not the highest common denominator. Enhanced autonegotiation can also identify a non-standardized mode of operation using next page messaging, additional physical signaling, or Layer 2 messaging.