摘要:
An illumination system generating light having at least one wavelength within 200 nm a plurality of nano-sized structures (e.g., voids). The optical fiber coupled to the light source. The light diffusing optical fiber has a core and a cladding. The plurality of nano-sized structures is situated either within said core or at a core-cladding boundary. The optical fiber also includes an outer surface. The optical fiber is configured to scatter guided light via the nano-sized structures away from the core and through the outer surface, to form a light-source fiber portion having a length that emits substantially uniform radiation over its length, said fiber having a scattering-induced attenuation greater than 50 dB/km for the wavelength(s) within 200 nm to 2000 nm range.
摘要:
An illumination system generating light having at least one wavelength within 200 nm to 2000 nm range. The system includes a light source and at least one light diffusing optical fiber with a plurality of nano-sized structures (e.g., voids). The optical fiber is coupled to the light source. The light diffusing optical fiber has a core and a cladding. The plurality of nano-sized structures is situated either within said core or at a core-cladding boundary. The optical fiber also includes an outer surface. The optical fiber is configured to scatter guided light via the nano-sized structures away from the core and through the outer surface, to form a light-source fiber portion having a length that emits substantially uniform radiation over its length, said fiber having a scattering-induced attenuation greater than 50 dB/km for the wavelength(s) within 200 nm to 2000 nm range.
摘要:
An illumination system generating light having at least one wavelength within 200 nm a plurality of nano-sized structures (e.g., voids). The optical fiber coupled to the light source. The light diffusing optical fiber has a core and a cladding. The plurality of nano-sized structures is situated either within said core or at a core-cladding boundary. The optical fiber also includes an outer surface. The optical fiber is configured to scatter guided light via the nano-sized structures away from the core and through the outer surface, to form a light-source fiber portion having a length that emits substantially uniform radiation over its length, said fiber having a scattering-induced attenuation greater than 50 dB/km for the wavelength(s) within 200 nm to 2000 nm range.
摘要:
An illumination system generating light having at least one wavelength within 200 nm a plurality of nano-sized structures (e.g., voids). The optical fiber coupled to the light source. The light diffusing optical fiber has a core and a cladding. The plurality of nano-sized structures is situated either within said core or at a core-cladding boundary. The optical fiber also includes an outer surface. The optical fiber is configured to scatter guided light via the nano-sized structures away from the core and through the outer surface, to form a light-source fiber portion having a length that emits substantially uniform radiation over its length, said fiber having a scattering-induced attenuation greater than 50 dB/km for the wavelength(s) within 200 nm to 2000 nm range.
摘要:
Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions. Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
摘要翻译:蛋白质结合水平小于约50-80ng / cm 2的疏水性聚合物表面通过以下方式实现:(1)施加由溶剂和具有HLB的非离子表面活性剂组成的涂布溶液 数量小于5的表面; 和(2)干燥表面以除去溶剂,从而使表面活性剂与疏水性聚合物直接接触。 已经发现低HLB值和干燥步骤的组合产生低结合表面,其可以经受多次用水和/或蛋白质溶液洗涤。 或者,低结合表面可以通过将非离子表面活性剂施加到与熔融聚合物接触的模具表面并将聚合物形成所需形状,例如多孔板,移液管尖端等来制备。 此外,低粘合表面可以通过将HLB数小于或等于10的非可溶性非离子表面活性剂在模制制品之前加入到聚合物共混物中来制备。
摘要:
An illumination system that includes at least one light-diffusing optical fiber is disclosed. The illumination system includes at least one low-scatter light-conducting optical fiber that optically couples the at least one light-diffusing optical fiber to at least one light source. The light-diffusing optical fiber includes a light-source fiber portion having a length over which scattered light is continuously emitted. The light-source fiber portion can be bent, including wound into a coil shape. The light-diffusing optical fiber includes a plurality of nano-sized structures configured to scatter guided light traveling within the light-diffusing optical fiber out of an outer surface of the fiber.
摘要:
An illumination system that includes at least one light-diffusing optical fiber is disclosed. The illumination system includes at least one low-scatter light-conducting optical fiber that optically couples the at least one light-diffusing optical fiber to at least one light source. The light-diffusing optical fiber includes a light-source fiber portion having a length over which scattered light is continuously emitted. The light-source fiber portion can be bent, including wound into a coil shape. The light-diffusing optical fiber includes a plurality of nano-sized structures configured to scatter guided light traveling within the light-diffusing optical fiber out of an outer surface of the fiber.
摘要:
An optical connector for terminating an optical fiber may include a ferrule, a optical fiber, and an adhesive composition. The ferrule may include a fiber-receiving passage defining an inner surface and the adhesive composition may be disposed within the ferrule and in contact with the inner surface of the ferrule and the optical fiber. The adhesive composition may include a partially cross-linked resin and a thermoset resin. The adhesive composition may include between about 1 to about 85 parts by weight of the thermoset resin per 100 parts by weight of the partially cross-linked resin.
摘要:
An optical fiber ribbon includes a plurality of optical fibers encapsulated within a matrix material, where the optical fiber coating(s) and the matrix material(s), and optionally any ink layers thereon, are characterized by compatible chemical and/or physical properties, whereby the fiber coating and matrix and any ink layers therebetween can be reliably stripped from the optical fibers to afford a suitable strip cleanliness. Novel ink formulations that can be used in the making of such fiber optic ribbons, methods of making such ribbons, and their use are also described.
摘要:
An optical fiber ribbon includes a plurality of optical fibers encapsulated within a matrix material, where the optical fiber coating(s) and the matrix material(s), and optionally any ink layers thereon, are characterized by compatible chemical and/or physical properties, whereby the fiber coating and matrix and any ink layers therebetween can be reliably stripped from the optical fibers to afford a suitable strip cleanliness. Novel ink formulations that can be used in the making of such fiber optic ribbons, methods of making such ribbons, and their use are also described.