摘要:
Adjusting parameters of a waveform includes facilitating wireless communication between a transmitting node and receiving nodes, where the transmitting node communicates with a receiving node over a channel. Spectrum conditions are estimated, where a spectrum condition describes spectrum utilization in the vicinity of surrounding nodes. Channel conditions are estimated, where a channel condition describes a channel of the plurality of channels. Waveform parameters are adjusted in response to the spectrum conditions and the channel conditions.
摘要:
Adjusting parameters of a waveform includes facilitating wireless communication between a transmitting node and receiving nodes, where the transmitting node communicates with a receiving node over a channel. Spectrum conditions are estimated, where a spectrum condition describes spectrum utilization in the vicinity of surrounding nodes. Channel conditions are estimated, where a channel condition describes a channel of the plurality of channels. Waveform parameters are adjusted in response to the spectrum conditions and the channel conditions.
摘要:
Establishing communications between a plurality of nodes includes determining a set of frequencies to search for neighbor nodes, and performing an adaptive control channel initialization operation to detect zero or more neighbor nodes. If one or neighbor nodes are detected, an adaptive control channel with one or more of the one or more detected neighbor nodes is established.
摘要:
Establishing communications between a plurality of nodes includes determining a set of frequencies to search for neighbor nodes, and performing an adaptive control channel initialization operation to detect zero or more neighbor nodes. If one or neighbor nodes are detected, an adaptive control channel with one or more of the one or more detected neighbor nodes is established.
摘要:
Using bearer channels for wireless nodes includes initiating communication among the wireless nodes that include a node and one or more neighbor nodes. An adaptive channel operable to communicate messages between the node and the neighbor nodes is established. One or more bearer channels are selected. The one or more neighbor nodes are notified of the one or more selected bearer channels using the adaptive channel. The node and the neighbor nodes communicate over the bearer channels.
摘要:
Using bearer channels for wireless nodes includes initiating communication among the wireless nodes that include a node and one or more neighbor nodes. An adaptive channel operable to communicate messages between the node and the neighbor nodes is established. One or more bearer channels are selected. The one or more neighbor nodes are notified of the one or more selected bearer channels using the adaptive channel. The node and the neighbor nodes communicate over the bearer channels.
摘要:
A spread spectrum radio frequency communication system includes a Forward Error Correction (FEC) algorithm to encode digital data to provide a plurality of symbol groups, the FEC algorithm using a Reed Solomon FEC code, an interleaving algorithm to map each one of the plurality of symbol groups into a corresponding one of a plurality of coherent sub-bands, and a Walsh encoder to encode each one of the plurality of symbol groups.
摘要:
A method and system for communicating using pulsed radar signal data links is disclosed. The method comprises encoding downlink data with a signature sequence as a secondary function onto a continuous wave pulse signal having a primary function at a master device. The data-encoded pulse signal from the master device is interpreted at one or more slave devices configured to receive the pulse signal within a first communications bandwidth of the primary and secondary functions. The master device synchronizes returning communication transmissions from each of the one or more slave devices for the secondary function within a prescribed return interval of the primary function.
摘要:
A transponder-based beacon transmitter system in an unmanned aerial vehicle is provided. The transponder-based beacon transmitter system comprises a global positioning system interface communicatively coupled to receive position information indicative of a current location of the unmanned aerial vehicle, a message formatter communicatively coupled to the global positioning system interface, and a transponder-based beacon transmitter. The message formatter formats vehicle identification of the unmanned aerial vehicle and the position information indicative of the current location of the unmanned aerial vehicle into an automatic dependent surveillance broadcast mode-select squitter message. The message formatter operates in one of a military mode, a National Airspace System mode, and a combined military/National Airspace System mode. The transponder-based beacon transmitter transmits the automatic dependent surveillance broadcast mode-select squitter messages from the unmanned aerial vehicle. Receivers in the vicinity of the unmanned aerial vehicle receive unsolicited vehicle identification and location of the unmanned aerial vehicle.
摘要:
A transponder-based beacon transmitter system in an unmanned aerial vehicle is provided. The transponder-based beacon transmitter system comprises a global positioning system interface communicatively coupled to receive position information indicative of a current location of the unmanned aerial vehicle, a message formatter communicatively coupled to the global positioning system interface, and a transponder-based beacon transmitter. The message formatter formats vehicle identification of the unmanned aerial vehicle and the position information indicative of the current location of the unmanned aerial vehicle into an automatic dependent surveillance broadcast mode-select squitter message. The message formatter operates in one of a military mode, a National Airspace System mode, and a combined military/National Airspace System mode. The transponder-based beacon transmitter transmits the automatic dependent surveillance broadcast mode-select squitter messages from the unmanned aerial vehicle. Receivers in the vicinity of the unmanned aerial vehicle receive unsolicited vehicle identification and location of the unmanned aerial vehicle.