Abstract:
A method for interconnecting multiple components of a head-gimbal assembly with a solder joint, including the steps of positioning a first component adjacent to a second component to provide a connection area between the first and second components, dispensing a solder sphere to a capillary tube comprising tapered walls, wherein the capillary tube is positioned with an exit orifice above the connection area between the first and second components, pressurizing the capillary tube until a predetermined pressure is reached, applying a first laser pulse to the solder sphere to provide a level of thermal energy to liquefy the solder sphere, detecting the movement of the liquefied solder sphere after it has exited the exit orifice of the capillary tube, and applying a second laser pulse to reflow the solder sphere to create the solder joint between the first and second components.
Abstract:
A method for interconnecting multiple components of a head-gimbal assembly with a solder joint, including the steps of positioning a first component adjacent to and at an angle relative to a second component to provide a connection area between the first and second components, dispensing a solder sphere to a capillary tube having tapered walls, wherein the capillary tube is positioned with an exit orifice above the connection area between the first and second components, pressurizing the capillary tube until a predetermined pressure is reached, applying a first laser pulse to the solder sphere to liquefy the solder sphere until it falls from the exit orifice, waiting for a predetermined time period after the liquefied solder sphere has exited the exit orifice of the capillary tube, and applying a second laser pulse to reflow the solder sphere to create the solder joint between the first and second components.
Abstract:
An apparatus includes a hopper configured to receive a plurality of solder microspheres, and a moveable singulation device positioned proximate to and below the hopper. The moveable singulation device is configured to receive the plurality of solder microspheres from the hopper as the plurality of microspheres exit the hopper. The movable singulation device includes a plurality of holes, with each of the plurality of holes configured to receive a single solder microsphere of the plurality of solder micro spheres. The apparatus further includes a piezoelectric vibration device configured to provide ultrasonic vibrations to the singulation device, thereby preventing agglomeration of the plurality of solder microspheres in the hopper.
Abstract:
A method for interconnecting multiple components of a head-gimbal assembly with a solder joint, including the steps of positioning a first component adjacent to and at an angle relative to a second component to provide a connection area between the first and second components, dispensing a solder sphere to a capillary tube having tapered walls, wherein the capillary tube is positioned with an exit orifice above the connection area between the first and second components, pressurizing the capillary tube until a predetermined pressure is reached, applying a first laser pulse to the solder sphere to liquefy the solder sphere until it falls from the exit orifice, waiting for a predetermined time period after the liquefied solder sphere has exited the exit orifice of the capillary tube, and applying a second laser pulse to reflow the solder sphere to create the solder joint between the first and second components.
Abstract:
An apparatus includes a slider which includes a slider body with a leading edge and a trailing edge and a plurality of slider bond pads disposed at the trailing edge. The slider bond pads are configured to align opposite to suspension trace bond pads on a suspension to form a solderable gap between the slider bond pads and the suspension trace bond pads.
Abstract:
An apparatus includes a slider body with a first portion formed of a first insulating material and a second portion formed of a second insulating material that is different from the first insulating material. The second portion of the slider body is at a trailing edge of the slider body and the second portion includes a bearing surface and a top surface opposite the bearing surface. A plurality of bond pads are disposed on the top surface of the second portion such that an entire bottom surface of each of the plurality bond pads is attached to the top surface of the second portion.
Abstract:
A method for interconnecting multiple components of a head-gimbal assembly with a solder joint, including the steps of positioning a first component adjacent to a second component to provide a connection area between the first and second components, dispensing a solder sphere to a capillary tube comprising tapered walls, wherein the capillary tube is positioned with an exit orifice above the connection area between the first and second components, pressurizing the capillary tube until a predetermined pressure is reached, applying a first laser pulse to the solder sphere to provide a level of thermal energy to liquefy the solder sphere until it falls from the exit orifice toward the connection area between the first and second components, detecting the movement of the liquefied solder sphere after it has exited the exit orifice of the capillary tube, and applying a second laser pulse to reflow the solder sphere to create the solder joint between the first and second components.