Abstract:
A system includes a control processor, a non-volatile memory device interface, and a micro-sequencer. The control processor may be configured to receive commands and send responses via a command interface. The non-volatile memory device interface may be configured to couple the system to one or more non-volatile memory devices. The micro-sequencer is generally coupled to (i) the control processor and (ii) the non-volatile memory device interface. The micro-sequencer includes a control store readable by the micro-sequencer and writable by the control processor. In response to receiving a particular one of the commands, the control processor is enabled to cause the micro-sequencer to begin executing at a location in the control store according to the particular command and the micro-sequencer is enabled to perform at least a portion of the particular command according to a protocol of the one or more non-volatile memory devices coupled to the non-volatile memory device interface.
Abstract:
An apparatus includes one or more error-correction decoders, a buffer, at least one direct memory access (DMA) engine, and at least one processor. The buffer may be configured to store data to be decoded by the one or more error-correction decoders. The at least one DMA engine may couple the buffer and the one or more error-correction decoders. The at least one processor may be enabled to send messages to the at least one DMA engine. The messages may be configured to deliver DMA control information and corresponding datapath control information. Data may be read from the buffer based upon the DMA control information and delivered to the one or more error-correction decoders along with the corresponding datapath control information. The one or more error-correction decoders may be enabled to decode the data read from the buffer according to the corresponding datapath control information.
Abstract:
An apparatus includes one or more error-correction decoders, a buffer, and at least one processor. The buffer may be configured to store data to be decoded by the one or more error-correction decoders. The at least one processor is generally enabled to send messages to the one or more error-correction decoders. The messages may contain datapath control information corresponding to data in the buffer to be decoded by the one or more error-correction decoders. The one or more error-correction decoders are generally enabled to decode the data read from the buffer according to the corresponding datapath control information.
Abstract:
An apparatus includes one or more error-correction decoders, a buffer, and at least one processor. The buffer may be configured to store data to be decoded by the one or more error-correction decoders. The at least one processor is generally enabled to send messages to the one or more error-correction decoders. The messages may contain datapath control information corresponding to data in the buffer to be decoded by the one or more error-correction decoders. The one or more error-correction decoders are generally enabled to decode the data read from the buffer according to the corresponding datapath control information.
Abstract:
An apparatus includes a device interface, a micro-sequencer, and a programmable sequence memory. The device interface may be configured to process a plurality of read/write operations to/from one or more non-volatile memory devices. The micro-sequencer may be configured to communicate with the device interface. The programmable sequence memory is generally readable by the micro-sequencer. In response to the apparatus receiving a command, (a) the micro-sequencer executes a set of instructions starting at a location in the programmable sequence memory according to the command and (b) the micro-sequencer is enabled to perform at least a portion of the command according to a protocol of the one or more non-volatile memory devices, when the one or more non-volatile memory devices are coupled to the device interface.
Abstract:
An apparatus includes a device interface, a micro-sequencer, and a programmable sequence memory. The device interface may be configured to process a plurality of read/write operations to/from one or more non-volatile memory devices. The micro-sequencer may be configured to communicate with the device interface. The programmable sequence memory is generally readable by the micro-sequencer. In response to the apparatus receiving a command, (a) the micro-sequencer executes a set of instructions starting at a location in the programmable sequence memory according to the command and (b) the micro-sequencer is enabled to perform at least a portion of the command according to a protocol of the one or more non-volatile memory devices, when the one or more non-volatile memory devices are coupled to the device interface.