Abstract:
Method and apparatus for managing a memory, such as but not limited to a flash memory. In accordance with some embodiments, user data and associated metadata are stored in a memory. The metadata are arranged as a first sequence of snapshots of the metadata at different points in time during the operation of the memory, and a second sequence of intervening journals which reflect updates to the metadata from one snapshot to the next. Requested portions of the metadata are recovered from the memory using a selected snapshot in the first sequence and first and second journals in the second sequence.
Abstract:
Method and apparatus for managing a memory, such as but not limited to a flash memory. In accordance with some embodiments, initial state information is stored which identifies an actual state of a garbage collection unit (GCU) of a memory during a normal operational mode. During a restoration mode after a memory power cycle event, a virtualized state of the GCU is determined responsive to the initial state information and to data read from the GCU. The memory is transitioned from the restoration mode to the normal operational mode once the virtualized state for the GCU is determined.
Abstract:
Method and apparatus for managing a memory, such as but not limited to a flash memory. In accordance with some embodiments, initial state information is stored which identifies an actual state of a garbage collection unit (GCU) of a memory during a normal operational mode. During a restoration mode after a memory power cycle event, a virtualized state of the GCU is determined responsive to the initial state information and to data read from the GCU. The memory is transitioned from the restoration mode to the normal operational mode once the virtualized state for the GCU is determined.
Abstract:
Method and apparatus for managing a memory, such as but not limited to a flash memory. In accordance with some embodiments, initial state information is stored which identifies an actual state of a garbage collection unit (GCU) of a memory during a normal operational mode. During a restoration mode after a memory power cycle event, a virtualized state of the GCU is determined responsive to the initial state information and to data read from the GCU. The memory is transitioned from the restoration mode to the normal operational mode once the virtualized state for the GCU is determined.
Abstract:
Method and apparatus for managing a memory, such as but not limited to a flash memory. In accordance with some embodiments, user data and associated metadata are stored in a memory. The metadata are arranged as a first sequence of snapshots of the metadata at different points in time during the operation of the memory, and a second sequence of intervening journals which reflect updates to the metadata from one snapshot to the next. Requested portions of the metadata are recovered from the memory using a selected snapshot in the first sequence and first and second journals in the second sequence.
Abstract:
Method and apparatus for managing a memory, such as but not limited to a flash memory. In accordance with some embodiments, initial state information is stored which identifies an actual state of a garbage collection unit (GCU) of a memory during a normal operational mode. During a restoration mode after a memory power cycle event, a virtualized state of the GCU is determined responsive to the initial state information and to data read from the GCU. The memory is transitioned from the restoration mode to the normal operational mode once the virtualized state for the GCU is determined.
Abstract:
A first data set is written to first memory units identified as having a higher data reliability and a second data set is written to second memory units identified as having a lower data reliability than the first memory units. In some cases, the second data set may include metadata or redundancy information that is useful to aid in reading and/or decoding the first data set. The act of writing the second data set increases the data reliability of the first data set. The second data set may be a null pattern, such as all erased bits.
Abstract:
A first data set is written to first memory units identified as having a higher data reliability and a second data set is written to second memory units identified as having a lower data reliability than the first memory units. In some cases, the second data set may include metadata or redundancy information that is useful to aid in reading and/or decoding the first data set. The act of writing the second data set increases the data reliability of the first data set. The second data set may be a null pattern, such as all erased bits.