Abstract:
A method of forming a magnetic recording head. The method includes depositing a sacrificial metal alloy layer, which is wet etchable and has a moderate mill resistance, over a substrate. The method also includes depositing a write pole layer over the sacrificial metal alloy layer. The write pole layer has a bottom surface and a top surface opposite the bottom surface. A portion of the bottom surface of the write pole layer is in contact with the sacrificial metal alloy layer.
Abstract:
Implementations disclosed herein provide an apparatus comprising a write pole, and a two-layer front shield formed on the write pole, the front shield comprising, a first dielectric material formed on the first layer of the front shield, an active shield control (ASC) device formed between the two layers of the front shield on the first dielectric material configured to synchronize the response to a magnetomotive force (MMF) of a write pole and the front shield, and a second dielectric material formed on the ASC device, wherein the second layer of the front shield is formed only on top of the second dielectric material and the first layer of the front shield.
Abstract:
A method includes forming a write pole layer having a front surface, a leading surface, a trailing surface and side surfaces connecting the leading surface to the trailing surface. The method also includes forming side shield layers proximate to the side surfaces of the write pole layer. A patterned sacrificial layer is deposited over the side shield layers, and a trailing surface bevel is formed on the write pole layer.
Abstract:
A write head having a main pole, a gap layer, and at least two sacrificial layers. In accordance with one embodiment, a method includes depositing a non-magnetic gap layer of material above a main pole layer of magnetic material; depositing a sacrificial layer of material above the non-magnetic gap layer of material; etching a portion of the sacrificial layer of material while not entirely removing the sacrificial layer of material; and depositing additional sacrificial material to the etched sacrificial layer.
Abstract:
Implementations disclosed herein provide a method of forming a first layer of a front shield in a magnetic recording head, depositing an active shield control (ASC) device on the first layer, and forming a second layer of the front shield on top of the ASC device and the first layer of the front shield. In another implementation, an apparatus includes a write pole, and a two layer front shield formed on the write pole, including an ASC device between the two layers of the front shield.
Abstract:
An apparatus has a main pole layer of magnetic material, a second layer of magnetic material, a first gap layer of non-magnetic material between the main pole layer and the second layer of magnetic material, and a second gap layer of non-magnetic material disposed between the main pole layer and the second layer of magnetic material. The second gap layer of non-magnetic material can be directly adjacent to the second layer of magnetic material. In accordance with one embodiment, this allows the gap to serve as a non-magnetic seed for the second layer of magnetic material. A method of manufacturing such a device is also described.
Abstract:
A magnetic element may be generally configured as a data writer constructed at least with a write pole within a box shield that consists of first and second side shields and first and second vertical shields. The write pole may be separated from the box shield by a multi-layer gap structure that consists of at least two gap layers of dissimilar materials.
Abstract:
In accordance with one embodiment, a method may be implemented by depositing a non-magnetic gap layer of material above a main pole layer of magnetic material; depositing a sacrificial layer of material above the non-magnetic gap layer of material; etching a portion of the sacrificial layer of material while not entirely removing the sacrificial layer of material; and depositing additional sacrificial material to the etched sacrificial layer.
Abstract:
A magnetic element may be generally configured as a data writer constructed at least with a write pole within a box shield that consists of first and second side shields and first and second vertical shields. The write pole may be separated from the box shield by a multi-layer gap structure that consists of at least two gap layers of dissimilar materials.
Abstract:
An apparatus has a main pole layer of magnetic material, a second layer of magnetic material, a first gap layer of non-magnetic material between the main pole layer and the second layer of magnetic material, and a second gap layer of non-magnetic material disposed between the main pole layer and the second layer of magnetic material. The second gap layer of non-magnetic material can be directly adjacent to the second layer of magnetic material. In accordance with one embodiment, this allows the gap to serve as a non-magnetic seed for the second layer of magnetic material. A method of manufacturing such a device is also described.