摘要:
A sensing system uses three-omega sensing to determine a spatial profile of thermal property within a sample. The sensing system electrically powers a lossy electrical conductor at different driving frequencies. The different driving frequencies produce different penetration depths within the sample. The sensing system takes multiple measurements of thermal property at the different driving frequencies. Each measurement is associated with a different penetration depth, and therefore is averaged over a differently-sized volume within the sample. The sensing system performs a fit on the multiple measurements of material thermal property versus material geometry. If one of thermal property or geometry is known beforehand, then the fit can determine the other. The lossy electrical conductor can be formed on a polymeric flexible membrane, on a probe that can be placed at a suitable location in a patient's body, and/or directly onto a heating or cooling element.
摘要:
A sensing system uses three-omega sensing to determine a spatial profile of thermal property within a sample. The sensing system electrically powers a lossy electrical conductor at different driving frequencies. The different driving frequencies produce different penetration depths within the sample. The sensing system takes multiple measurements of thermal property at the different driving frequencies. Each measurement is associated with a different penetration depth, and therefore is averaged over a differently-sized volume within the sample. The sensing system performs a fit on the multiple measurements of material thermal property versus material geometry. If one of thermal property or geometry is known beforehand, then the fit can determine the other. The lossy electrical conductor can be formed on a polymeric flexible membrane, on a probe that can be placed at a suitable location in a patient's body, and/or directly onto a heating or cooling element.