摘要:
Classes of molecules are disclosed which can, for example, be used in molecular switches. The classes of molecules include at least three segments—an electronic donor (“D”), a switchable bridge (“B”), and an electronic acceptor (“A”)—chemically connected and linearly arranged (e.g., D-B-A). The electronic donor can be an aromatic ring system with at least one electron donating group covalently attached; an aromatic ring system with an electron withdrawing group covalently attached is usually employed as the electronic acceptor; and the switchable bridge can be a pi system that can be switched on or off using an external electric field.
摘要:
Classes of molecules are disclosed which can, for example, be used in molecular switches. The classes of molecules include at least three segments—an electronic donor (“D”), a switchable bridge (“B”), and an electronic acceptor (“A”)—chemically connected and linearly arranged (e.g., D-B-A). The electronic donor can be an aromatic ring system with at least one electron donating group covalently attached; an aromatic ring system with an electron withdrawing group covalently attached is usually employed as the electronic acceptor; and the switchable bridge can be a pi system that can be switched on or off using an external electric field.
摘要:
Classes of molecules are disclosed which can, for example, be used in molecular switches. The classes of molecules include at least three segments—an electronic donor (“D”), a switchable bridge (“B”), and an electronic acceptor (“A”)—chemically connected and linearly arranged (e.g., D-B-A). The electronic donor can be an aromatic ring system with at least one electron donating group covalently attached; an aromatic ring system with an electron withdrawing group covalently attached is usually employed as the electronic acceptor; and the switchable bridge can be a pi system that can be switched on or off using an external electric field.
摘要:
A method of attaching a molecular layer to a substrate includes attaching a temporary protecting group(s) to a molecule having a molecular switching moiety with first and second connecting groups attached to opposed ends thereof. The temporary protecting group(s) is attached to the first and/or second connecting group so as to cause the opposed ends of the switching moiety to exhibit a difference in hydrophilicity such that one of the ends remains at at least one of a water/solvent interface and a water/air interface, and the other end remains in air during a Langmuir-Blodgett (LB) process. An LB film is formed on the interface. The temporary protecting group(s) is removed. The substrate is passed through the LB film to form the molecular layer chemically bonded on the substrate. The difference in hydrophilicity between the opposed ends causes formation of a substantially well-oriented, uniform LB film at the interface.
摘要:
A method of forming a crossed wire molecule device comprising a plurality of bottom electrodes, a plurality of top electrodes crossing the bottom electrodes at a non-zero angle, and a self-assembled molecular film chemically bonded to a surface of each of the bottom electrodes is provided. The self-assembled molecular film includes one or more defect sites and a plurality of active device molecules, each of the plurality of active device molecules including a molecular switching moiety having a self-assembling connecting group at one end of the moiety and a linking group at an opposed end of the moiety. The polymeric material chemically bonds to at least some of the linking groups of the plurality of active device molecules, causing the formation of the self-assembled molecular layer covering the plurality of active device molecules and the defect site(s). A molecular switching device is also provided.
摘要:
Various embodiments of the present invention are directed to molecular-film adhesives and methods and systems for using molecular-film adhesives. In one embodiment of the present invention, an amphipathic, biological-substrate-compatible adhesive is applied as a molecular-film. The amphipathic adhesive includes a first functional group, capable of bonding to a first substrate, and a second functional group, capable of bonding to a second, chemically dissimilar substrate.
摘要:
A method of forming a crossed wire molecule device comprising a plurality of bottom electrodes, a plurality of top electrodes crossing the bottom electrodes at a non-zero angle, and a self-assembled molecular film chemically bonded to a surface of each of the bottom electrodes is provided. The self-assembled molecular film includes one or more defect sites and a plurality of active device molecules, each of the plurality of active device molecules including a molecular switching moiety having a self-assembling connecting group at one end of the moiety and a linking group at an opposed end of the moiety. The polymeric material chemically bonds to at least some of the linking groups of the plurality of active device molecules, causing the formation of the self-assembled molecular layer covering the plurality of active device molecules and the defect site(s). A molecular switching device is also provided.
摘要:
A method includes chemically bonding a polymeric material to a self-assembled molecular film that is chemically bonded to a surface of a substrate. The self-assembled molecular film includes one or more defect sites and a plurality of active device molecules, each of the plurality of active device molecules including a molecular switching moiety having a self-assembling connecting group at one end of the moiety and a linking group at an opposed end of the moiety. The polymeric material chemically bonds to at least some of the linking groups of the plurality of active device molecules, causing the formation of the self-assembled molecular layer covering the plurality of active device molecules and the defect site(s).
摘要:
A molecular layer includes a Langmuir-Blodgett (LB) film of a molecule connected to a plurality of active device molecules, the molecule having a moiety with first and second connecting groups at opposed ends of the moiety. Each of the plurality of active device molecules includes a switching moiety, a self-assembling connecting group at one end of the switching moiety, and a linking group at an opposed end of the moiety. One or more defect site(s) exist between the plurality of active device molecules. A respective number of the first connecting groups of the LB film are connected to the plurality of active device molecules via at least some of the linking groups such that the LB film covers the plurality of active device molecules and the one or more defect site(s).
摘要:
A molecular layer includes a Langmuir-Blodgett (LB) film of a molecule connected to a plurality of active device molecules, the molecule having a moiety with first and second connecting groups at opposed ends of the moiety. Each of the plurality of active device molecules includes a switching moiety, a self-assembling connecting group at one end of the switching moiety, and a linking group at an opposed end of the moiety. One or more defect site(s) exist between the plurality of active device molecules. A respective number of the first connecting groups of the LB film are connected to the plurality of active device molecules via at least some of the linking groups such that the LB film covers the plurality of active device molecules and the one or more defect site(s).