摘要:
The present invention relates the separation of a target gas from a mixture of gases through the use of engineered structured adsorbent contactors in pressure swing adsorption and thermal swing adsorption processes. Preferably, the contactors contain engineered and substantially parallel flow channels wherein 20 volume percent or less of the open pore volume of the contactor, excluding the flow channels, is in the mesopore and macropore range.
摘要:
The present invention relates the separation of a target gas from a mixture of gases through the use of engineered structured adsorbent contactors in pressure swing adsorption and thermal swing adsorption processes. Preferably, the contactors contain engineered and substantially parallel flow channels wherein 20 volume percent or less of the open pore volume of the contactor, excluding the flow channels, is in the mesopore and macropore range.
摘要:
The adsorption of CO2 from flue gas streams using temperature swing adsorption. Adsorbent contactors are used in the temperature swing adsorption unit that contain a plurality of substantially parallel channels comprised of or coated with an adsorbent material that is selective for adsorbing CO2 from flue gas.
摘要:
The adsorption of CO2 from flue gas streams using temperature swing adsorption. Adsorbent contactors are used in the temperature swing adsorption unit that contain a plurality of substantially parallel channels comprised of or coated with an adsorbent material that is selective for adsorbing CO2 from flue gas.
摘要:
Adsorption of CO2 from flue gas streams using temperature swing adsorption. The resulting CO2 rich stream is compressed for sequestration into a subterranean formation and at least a portion of the heat of compression is used in the desorption step of the temperature swing adsorption process.
摘要:
Adsorption of CO2 from flue gas streams using temperature swing adsorption. The resulting CO2 rich stream is compressed for sequestration into a subterranean formation and at least a portion of the heat of compression is used in the desorption step of the temperature swing adsorption process.
摘要:
The separation of a target gas from a mixture of gases using a thermal swing adsorption process wherein a thermal wave is used, primarily in the desorption step. The process of this invention enables one to separately remove multiple contaminants from a treated gaseous stream.
摘要:
The separation of a target gas from a mixture of gases using a thermal swing adsorption process wherein a thermal wave is used, primarily in the desorption step. The process of this invention enables one to separately remove multiple contaminants from a treated gaseous stream.
摘要:
A multistage catalytic partial oxidation (CPO) process for oxidizing a hydrocarbon feedstream comprising C1-C4 hydrocarbons, with an oxygen-containing feedstream to produce a product comprising CO and H2, also known as synthesis gas or syngas. The process employs a CPO catalyst, and controlled process features, including: (A) the total oxygen requirement for the process is introduced incrementally, in more than one reaction stage, using an oxygen-containing feedstream at more than one feed point in the process, each stage including a catalyst; (B) the oxygen-containing feedstream, hydrocarbon feedstream and, in reaction stages after the first of said multiple stages, the intermediate product produced in the prior stage, are mixed for a period of time, after they are brought into contact with one another, of less than about 1 millisecond to form a substantially uniform mixture, wherein the mixture is then contacted with the catalyst; (C) the oxygen-containing feedstream and the hydrocarbon feedstream are preheated prior to entry into the first stage, to a temperature of from about 450° C. to less than about 1,000° C.; and (D) the mixture temperature of the product in each stage following the first stage is from greater than about 600° C. to less than about 1,000° C. Preferably, the process comprises less than or equal to about five stages, the first stage preheat temperature recited in step (C) is greater than about 550° C. and the mixture temperature of the product in each stage following the first stage is at least 700° C.
摘要:
The present application is directed to a method and system for monetizing energy. More specifically, the invention is directed to the economically efficient utilization of remote or stranded natural gas resources. The invention includes importing a high energy density material into an energy market and distributing the high energy density material (HEDM) therein. The HEDM is produced from reduction of a material oxide such as boria into the HEDM, which may be boron. The reduction utilizes remote hydrocarbon resources such as stranded natural gas resources.