摘要:
A multistage catalytic partial oxidation (CPO) process for oxidizing a hydrocarbon feedstream comprising C1-C4 hydrocarbons, with an oxygen-containing feedstream to produce a product comprising CO and H2, also known as synthesis gas or syngas. The process employs a CPO catalyst, and controlled process features, including: (A) the total oxygen requirement for the process is introduced incrementally, in more than one reaction stage, using an oxygen-containing feedstream at more than one feed point in the process, each stage including a catalyst; (B) the oxygen-containing feedstream, hydrocarbon feedstream and, in reaction stages after the first of said multiple stages, the intermediate product produced in the prior stage, are mixed for a period of time, after they are brought into contact with one another, of less than about 1 millisecond to form a substantially uniform mixture, wherein the mixture is then contacted with the catalyst; (C) the oxygen-containing feedstream and the hydrocarbon feedstream are preheated prior to entry into the first stage, to a temperature of from about 450° C. to less than about 1,000° C.; and (D) the mixture temperature of the product in each stage following the first stage is from greater than about 600° C. to less than about 1,000° C. Preferably, the process comprises less than or equal to about five stages, the first stage preheat temperature recited in step (C) is greater than about 550° C. and the mixture temperature of the product in each stage following the first stage is at least 700° C.
摘要:
The present invention relates the separation of a target gas from a mixture of gases through the use of engineered structured adsorbent contactors in pressure swing adsorption and thermal swing adsorption processes. Preferably, the contactors contain engineered and substantially parallel flow channels wherein 20 volume percent or less of the open pore volume of the contactor, excluding the flow channels, is in the mesopore and macropore range.
摘要:
The present invention relates the separation of a target gas from a mixture of gases through the use of engineered structured adsorbent contactors in pressure swing adsorption and thermal swing adsorption processes. Preferably, the contactors contain engineered and substantially parallel flow channels wherein 20 volume percent or less of the open pore volume of the contactor, excluding the flow channels, is in the mesopore and macropore range.
摘要:
Adsorption of CO2 from flue gas streams using temperature swing adsorption. The resulting CO2 rich stream is compressed for sequestration into a subterranean formation and at least a portion of the heat of compression is used in the desorption step of the temperature swing adsorption process.
摘要:
A novel injector/reactor apparatus and an efficient process for the partial oxidation of light hydrocarbon gases, such as methane, to convert such gases to useful synthesis gas for recovery and/or subsequent hydrocarbon synthesis. Sources of a light hydrocarbon gas, such as methane, and oxygen or an oxygen-containing gas are preheated and pressurized and injected through an injector means at high velocity into admixture with each other in the desired proportions, at a plurality of mixing nozzles which are open to the catalytic partial oxidation reaction zone of a reactor and are uniformly-spaced over the face of the injector, to form a reactant gaseous premix having a pressure drop through the injector. The gaseous premix is injected in a time period which is less than 5 milliseconds, at a velocity between about 25 to 1000 feet/second, into a reaction zone comprising a catalytic partial oxidation zone so that the gaseous premix reacts in the presence of the fixed catalyst arrangement to reduce the amounts of CO.sub.2, H.sub.2 O and heat produced by the partial oxidation reaction and form, cool and recover a useful syngas.
摘要:
The invention is a process for production of C.sub.3 to C.sub.6 aldehydes by hydroformylating a mixture containing: (a) C.sub.2 to C.sub.5 olefins and mixtures thereof, and (b) (i) C.sub.2 to C.sub.5 alkynes and mixtures thereof or (ii) C.sub.3 to C.sub.5 cumulated dienes and mixtures thereof or (iii) mixtures of (i) and (ii), with CO, H.sub.2 and a solution of a rhodium complex catalyst produced by complexing Rh and an organophosphorus compound at a concentration of Rh in solution from 1 to 1000 ppm by weight. Alternatively, the solution of rhodium complex catalyst can have a P/Rh atom ratio of at least 30. Alternatively, the solution of rhodium complex catalyst can have a P/Rh atom ratio greater than the value R.sub.L defined by the formula: ##EQU1## in which R.sub.B is the P/Rh ratio sufficient for a catalytically active Rh complex, pKa.sub.TPP is the pKa value for triphenylphosphine, pKa.sub.L is the pKa value for the triorganophosphorus compound, R is the gas constant, and .DELTA.S.sub.B is 35(N-1) cal/mole/.degree.K., N is the number of P-Rh attachments per ligand molecule. The process has utility for the hydroformylation of streams that contain olefins and alkynes.
摘要:
The present invention provides a process for the manufacture of acetylene and other higher hydrocarbons from methane feed using a reverse-flow reactor system, wherein the reactor system includes (i) a first reactor and (ii) a second reactor, the first and second reactors oriented in a series relationship with respect to each other, the process comprising supplying each of first and second reactant through separate channels in the first reactor bed of a reverse-flow reactor such that both of the first and second reactants serve to quench the first reactor bed, without the first and second reactants substantially reacting with each other until reaching the core of the reactor system.
摘要:
The present invention provides a process for the manufacture of acetylene and other higher hydrocarbons from methane feed using a reverse-flow reactor system, wherein the reactor system includes (i) a first reactor and (ii) a second reactor, the first and second reactors oriented in a series relationship with respect to each other, the process comprising supplying each of first and second reactant through separate channels in the first reactor bed of a reverse-flow reactor such that both of the first and second reactants serve to quench the first reactor bed, without the first and second reactants substantially reacting with each other until reaching the core of the reactor system.
摘要:
The invention provides a method for generating power with a gas turbine which utilizes pressure swing reforming under conditions that facilitate CO2 capture. First a synthesis gas stream at a first pressure is produced in a pressure swing reformer. Next the synthesis gas stream is subjected to a high temperature water gas shift process to produce a CO2 containing hydrogen enriched stream from which hydrogen and CO2 each are separated. The separated hydrogen in turn is combusted with air to produce a gas turbine and the separated CO2 is easily sequestered.
摘要:
This invention is directed to a heat exchanged membrane reactor for electric power generation. More specifically, the invention comprises a membrane reactor system that employs catalytic or thermal steam reforming and a water gas shift reaction on one side of the membrane, and hydrogen combustion on the other side of the membrane. Heat of combustion is exchanged through the membrane to heat the hydrocarbon fuel and provide heat for the reforming reaction. In one embodiment, the hydrogen is combusted with compressed air to power a turbine to produce electricity. A carbon dioxide product stream is produced in inherently separated form and at pressure to facilitate injection of the CO2 into a well for the purpose of sequestering carbon from the earth's atmosphere.