摘要:
The present invention provides methods, systems, and apparatus for calibrating a laser ablation system, such as an excimer laser system for selectively ablating a cornea of a patient's eye. The invention also facilitates alignment of eye tracking cameras that measure a position of the eye during laser eye surgery. A calibration and alignment fixture for a scanning laser beam delivery system having eye tracking cameras may include a structure positionable in a treatment plane. The structure having a feature directing laser energy incident thereon to a calibration energy sensor, at least one reference-edge to determine a characteristic of the laser beam (shape, dimensions, etc.), and an artificial pupil to determine alignment of the eye tracking cameras with the laser system.
摘要:
A wavefront sensor enhances calibration of a laser ablation system, such as a laser eye surgery system, by measuring one or more characteristics of an ablated test surface. Typically, light is passed through the ablated test surface, and the light is analyzed to determine the test surface characteristics. In some embodiments, the ablated test surface is positioned along a treatment plane. In some embodiments, light is passed through a wavefront sensor, such as a Hartmann-Shack sensor, to convert the light into electrical signals. A processor then converts the electrical signals into data, such as surface maps showing high-order aberrations and/or artifacts on the test surface, refractive power measurements, shape measurements, and the like. Generated data may then be used to calibrate a laser surgery system.
摘要:
Devices, systems, and methods for treating and/or determining appropriate prescriptions for one or both eyes of a patient are particularly well-suited for addressing presbyopia, often in combination with concurrent treatments of other vision defects. High-order spherical aberration may be imposed in one or both of a patient's eyes, often as a controlled amount of negative spherical aberration extending across a pupil. A desired presbyopia-mitigating quantity of high-order spherical aberration may be defined by one or more spherical Zernike coefficients, which may be combined with Zernike coefficients generated from a wavefront aberrometer. The resulting prescription can be imposed using refractive surgical techniques such as laser eye surgery, using intraocular lenses and other implanted structures, using contact lenses, using temporary or permanent corneal reshaping techniques, and/or the like.
摘要:
An eye measurement system may include a target that moves transverse to an optical path from the target to eye, so as to relax accommodation of the lens of the eye. The target may move transverse to the optical path on a display. The patient may be fogged while the target moves transverse to the optical path, and the target may become smaller such that the patient perceives the target to be moving away from the patient. A pupil camera may measure eye position that can be correlated with the position of the target on the display to determine that the patient has maintained fixation on the moving target. A visible measurement light beam may be pulsed subsequent to and/or during motion of the target that relaxes accommodation of the eye so as to avoid visual interference of the measurement light beam with the target on the display.
摘要:
The present invention provides methods, systems, and apparatus for calibrating a laser ablation system, such as an excimer laser system for selectively ablating a cornea of a patient's eye. The invention also facilitates alignment of eye tracking cameras that measure a position of the eye during laser eye surgery. A calibration and alignment fixture for a scanning laser beam delivery system having eye tracking cameras may include a structure positionable in a treatment plane. The structure having a feature directing laser energy incident thereon to a calibration energy sensor, at least one reference-edge to determine a characteristic of the laser beam (shape, dimensions, etc.), and an artificial pupil to determine alignment of the eye tracking cameras with the laser system.
摘要:
Devices, systems, and methods for treating and/or determining appropriate prescriptions for one or both eyes of a patient are particularly well-suited for addressing presbyopia, often in combination with concurrent treatments of other vision defects. High-order spherical aberration may be imposed in one or both of a patient's eyes, often as a controlled amount of negative spherical aberration extending across a pupil. A desired presbyopia-mitigating quantity of high-order spherical aberration may be defined by one or more spherical Zernike coefficients, which may be combined with Zernike coefficients generated from a wavefront aberrometer. The resulting prescription can be imposed using refractive surgical techniques such as laser eye surgery, using intraocular lenses and other implanted structures, using contact lenses, using temporary or permanent corneal reshaping techniques, and/or the like.
摘要:
An eye measurement system may include a target that moves transverse to an optical path from the target to eye, so as to relax accommodation of the lens of the eye. The target may move transverse to the optical path on a display. The patient may be fogged while the target moves transverse to the optical path, and the target may become smaller such that the patient perceives the target to be moving away from the patient. A pupil camera may measure eye position that can be correlated with the position of the target on the display to determine that the patient has maintained fixation on the moving target. A visible measurement light beam may be pulsed subsequent to and/or during motion of the target that relaxes accommodation of the eye so as to avoid visual interference of the measurement light beam with the target on the display.
摘要:
An eye measurement system may include a target that moves transverse to an optical path from the target to eye, so as to relax accommodation of the lens of the eye. The target may move transverse to the optical path on a display. The patient may be fogged while the target moves transverse to the optical path, and the target may become smaller such that the patient perceives the target to be moving away from the patient. A pupil camera may measure eye position that can be correlated with the position of the target on the display to determine that the patient has maintained fixation on the moving target. A visible measurement light beam may be pulsed subsequent to and/or during motion of the target that relaxes accommodation of the eye so as to avoid visual interference of the measurement light beam with the target on the display.
摘要:
Devices, systems, and methods for treating and/or determining appropriate prescriptions for one or both eyes of a patient are particularly well-suited for addressing presbyopia, often in combination with concurrent treatments of other vision defects. High-order spherical aberration may be imposed in one or both of a patient's eyes, often as a controlled amount of negative spherical aberration extending across a pupil. A desired presbyopia-mitigating quantity of high-order spherical aberration may be defined by one or more spherical Zernike coefficients, which may be combined with Zernike coefficients generated from a wavefront aberrometer. The resulting prescription can be imposed using refractive surgical techniques such as laser eye surgery, using intraocular lenses and other implanted structures, using contact lenses, using temporary or permanent corneal reshaping techniques, and/or the like.
摘要:
Devices, systems, and methods for treating and/or determining appropriate prescriptions for one or both eyes of a patient are particularly well-suited for addressing presbyopia, often in combination with concurrent treatments of other vision defects. High-order spherical aberration may be imposed in one or both of a patient's eyes, often as a controlled amount of negative spherical aberration extending across a pupil. A desired presbyopia-mitigating quantity of high-order spherical aberration may be defined by one or more spherical Zernike coefficients, which may be combined with Zernike coefficients generated from a wavefront aberrometer. The resulting prescription can be imposed using refractive surgical techniques such as laser eye surgery, using intraocular lenses and other implanted structures, using contact lenses, using temporary or permanent corneal reshaping techniques, and/or the like.