摘要:
A process comprising: providing a substrate with a catalyst layer thereon; depositing a first ionomer overcoat layer over the catalyst layer, the first ionomer overcoat layer comprising an ionomer and a first solvent; drying the first ionomer overcoat layer to provide a first electrode ionomer overcoat layer; depositing a second ionomer overcoat layer over the first electrode ionomer overcoat layer, and wherein the second ionomer overcoat layer comprises an ionomer and a second solvent.
摘要:
A process comprising: providing a substrate with a catalyst layer thereon; depositing a first ionomer overcoat layer over the catalyst layer, the first ionomer overcoat layer comprising an ionomer and a first solvent; drying the first ionomer overcoat layer to provide a first electrode ionomer overcoat layer; depositing a second ionomer overcoat layer over the first electrode ionomer overcoat layer, and wherein the second ionomer overcoat layer comprises an ionomer and a second solvent.
摘要:
Provided is an electrolyte membrane containing: a reinforced inner layer; and an unreinforced outer layer on one or each side of the reinforced inner layer, wherein the reinforced inner layer includes an inner ion exchange resin reinforced with a non-woven fabric composed of a melt moldable fluororesin in the form of a continuous fiber, wherein a number of intersecting points of the continuous fiber are fused and/or bonded, and wherein the unreinforced outer layer includes an outer ion exchange resin, which may be the same as or different from the inner ion exchange resin. Also provided is a membrane electrode assembly for a polymer electrolyte fuel cell, wherein the membrane electrode assembly contains the above-mentioned polymer electrolyte membrane.
摘要:
Provided is an electrolyte membrane and a process of producing the same, wherein the electrolyte membrane predominantly comprises an unreinforced outer layer on one or each side of a reinforced inner layer, wherein the reinforced inner layer comprises an inner ion exchange resin reinforced with a non-woven fabric comprising a melt moldable fluororesin in the form of a continuous fiber, wherein some intersecting points of the continuous fiber are fused or bonded, and wherein the unreinforced outer layer comprises an outer ion exchange resin, which may be the same as or different from the inner ion exchange resin. The electrolyte membrane has high strength, excellent dimensional stability and low electric resistance and is therefore useful as a polymer electrolyte membrane for a membrane electrode assembly for a polymer electrolyte fuel cell having high output and excellent durability.
摘要:
To provide an electrolyte membrane having high strength even if it is thin in the thickness, excellent dimensional stability even upon absorption of water and a low electrical resistance; a process for producing the electrolyte membrane; and a membrane-electrode assembly for polymer electrolyte fuel cells having a high output and excellent durability, having the electrolyte membrane. An electrolyte membrane which is made mainly of an ion exchange resin and reinforced with a non-woven fabric made of continuous fiber of a fluororesin wherein at least some of intersecting points of the continuous fiber are fixed, and which has, as the outermost layer on one side or each side, a layer not reinforced, made of an ion exchange resin which may be the same as or different from the above ion exchange resin. The non-woven fabric is produced by a melt-blown method.
摘要:
A process is provided whereby a membrane/electrode assembly for polymer electrolyte fuel cells whereby a high output voltage is obtainable within a wide range of current densities.A process for producing a membrane/electrode assembly 1 comprising a first electrode 10 having a first catalyst layer 12 and a first gas diffusion layer 14, a second electrode 20 having a second catalyst layer 22 and a second gas diffusion layer 24, and an electrolyte membrane 30, wherein the first gas diffusion layer 14, a first intermediate having the first catalyst layer 12 formed on the surface of the electrolyte membrane 30 by coating followed by annealing, and a second intermediate having the second catalyst layer 22 formed on the surface of the second gas diffusion layer 24 by coating, are bonded, so that the first catalyst layer 12 is located between the first gas diffusion layer 14 and the electrolyte membrane 30, and the second catalyst layer 22 is located between the second gas diffusion layer 24 and the electrolyte membrane 30.
摘要:
A process is provided whereby a membrane/electrode assembly for polymer electrolyte fuel cells whereby a high output voltage is obtainable within a wide range of current densities. A process for producing a membrane/electrode assembly 1 comprising a first electrode 10 having a first catalyst layer 12 and a first gas diffusion layer 14, a second electrode 20 having a second catalyst layer 22 and a second gas diffusion layer 24, and an electrolyte membrane 30, wherein the first gas diffusion layer 14, a first intermediate having the first catalyst layer 12 formed on the surface of the electrolyte membrane 30 by coating followed by annealing, and a second intermediate having the second catalyst layer 22 formed on the surface of the second gas diffusion layer 24 by coating, are bonded, so that the first catalyst layer 12 is located between the first gas diffusion layer 14 and the electrolyte membrane 30, and the second catalyst layer 22 is located between the second gas diffusion layer 24 and the electrolyte membrane 30.
摘要:
The present invention provides a membrane-electrode assembly for polymer electrolyte fuel cells and a polymer electrolyte fuel cell having excellent dimensional stability and mechanical strength, and having high durability at the time of a power generation. Each of polymer electrolyte membranes (111, 211, 311) have a region 1 having proton conductivity over the entirety in the thickness direction of the membrane and a region 2 located at the outer peripheral portion of the region 1 and having a non-porous sheet disposed so that the region 2 has no proton conductivity over the entirety in the thickness direction of the membrane, and outer edges of the catalyst layers (127, 128) are disposed so as to be located in the area 2.
摘要:
The present invention provides a membrane-electrode assembly for polymer electrolyte fuel cells and a polymer electrolyte fuel cell having excellent dimensional stability and mechanical strength, and having high durability at the time of a power generation. Each of polymer electrolyte membranes (111, 211, 311) have a region 1 having proton conductivity over the entirety in the thickness direction of the membrane and a region 2 located at the outer peripheral portion of the region 1 and having a non-porous sheet disposed so that the region 2 has no proton conductivity over the entirety in the thickness direction of the membrane, and outer edges of the catalyst layers (127, 128) are disposed so as to be located in the area 2.
摘要:
To provide a polymer electrolyte membrane having excellent size stability and excellent mechanical strength that can sufficiently prevent the size change due to the swelling condition, the displacement of the polymer electrolyte membrane and the formation of wrinkles during the production of the polymer electrolyte fuel cell, and can prevent damage during the production and operation of the polymer electrolyte fuel cell. In a composite electrolyte membrane including a porous reinforcement layer made of a resin and an electrolyte layer made of a polymer electrolyte and laminated at least one main surface of the reinforcement layer, the direction having a high tensile modulus of elasticity in the reinforcement layer is substantially corresponded with the direction having a high rate of size change in the electrolyte layer.