Abstract:
A method of establishing a multicast transfer route is disclosed that can reduce the cost of entire route under a constraint on delay incurred between starting point and ending points. The method includes the steps of: computing the shortest route with respect to delay connecting the starting point and the plural ending points based on measurement result; computing delay from a node on the shortest route to each ending point and the greatest delay; removing, if the greatest delay satisfies a delay condition, the greatest-cost route from the shortest route in accordance with selection criteria effective for cost reduction; dividing the multicast transfer route into two route trees; and establishing separately computed route as a complementary route that complement the removed route for connecting the two route trees. A method of multicast label switching for realizing the above method is also disclosed. A multicast label switching route is established using hierarchical labels by establishing a common multicast label switching route using a first layer label and establishing plural partial multicast label switching routes for subgroup destinations using lower layer labels. A relay node recognizes the hierarchical labels thereby to label-switch using all hierarchical labels.
Abstract:
A multicast communication path calculation method is disclosed which includes the steps of: obtaining minimum delay paths from a source node to each destination node; selecting, as candidate nodes of a rendezvous point node, nodes on one of the obtained minimum delay paths; for each candidate node, calculating minimum delay paths from the candidate node to each destination node, and obtaining a difference between the maximum value and the minimum value among delays of the calculated minimum delay paths; selecting, as the rendezvous point node, a candidate node by which the difference is smallest; and outputting a minimum delay path from the source node to the rendezvous point node and minimum delay paths from the rendezvous point node to each destination node.
Abstract:
A method of establishing a multicast transfer route is disclosed that can reduce the cost of entire route under a constraint on delay incurred between starting point and ending points. The method includes the steps of: computing the shortest route with respect to delay connecting the starting point and the plural ending points based on measurement result; computing delay from a node on the shortest route to each ending point and the greatest delay; removing, if the greatest delay satisfies a delay condition, the greatest-cost route from the shortest route in accordance with selection criteria effective for cost reduction; dividing the multicast transfer route into two route trees; and establishing separately computed route as a complementary route that complement the removed route for connecting the two route trees. A method of multicast label switching for realizing the above method is also disclosed. A multicast label switching route is established using hierarchical labels by establishing a common multicast label switching route using a first layer label and establishing plural partial multicast label switching routes for subgroup destinations using lower layer labels. A relay node recognizes the hierarchical labels thereby to label-switch using all hierarchical labels.
Abstract:
A method of establishing a multicast transfer route is disclosed that can reduce the cost of entire route under a constraint on delay incurred between starting point and ending points. The method includes the steps of: computing the shortest route with respect to delay connecting the starting point and the plural ending points based on measurement result; computing delay from a node on the shortest route to each ending point and the greatest delay; removing, if the greatest delay satisfies a delay condition, the greatest-cost route from the shortest route in accordance with selection criteria effective for cost reduction; dividing the multicast transfer route into two route trees; and establishing separately computed route as a complementary route that complement the removed route for connecting the two route trees. A method of multicast label switching for realizing the above method is also disclosed. A multicast label switching route is established using hierarchical labels by establishing a common multicast label switching route using a first layer label and establishing plural partial multicast label switching routes for subgroup destinations using lower layer labels. A relay node recognizes the hierarchical labels thereby to label-switch using all hierarchical labels.
Abstract:
A multicast communication path calculation method is disclosed which includes the steps of: obtaining minimum delay paths from a source node to each destination node; selecting, as candidate nodes of a rendezvous point node, nodes on one of the obtained minimum delay paths; for each candidate node, calculating minimum delay paths from the candidate node to each destination node, and obtaining a difference between the maximum value and the minimum value among delays of the calculated minimum delay paths; selecting, as the rendezvous point node, a candidate node by which the difference is smallest; and outputting a minimum delay path from the source node to the rendezvous point node and minimum delay paths from the rendezvous point node to each destination node.
Abstract:
A method of establishing a multicast transfer route is disclosed that can reduce the cost of entire route under a constraint on delay incurred between starting point and ending points. The method includes the steps of: computing the shortest route with respect to delay connecting the starting point and the plural ending points based on measurement result; computing delay from a node on the shortest route to each ending point and the greatest delay; removing, if the greatest delay satisfies a delay condition, the greatest-cost route from the shortest route in accordance with selection criteria effective for cost reduction; dividing the multicast transfer route into two route trees; and establishing separately computed route as a complementary route that complement the removed route for connecting the two route trees. A method of multicast label switching for realizing the above method is also disclosed. A multicast label switching route is established using hierarchical labels by establishing a common multicast label switching route using a first layer label and establishing plural partial multicast label switching routes for subgroup destinations using lower layer labels. A relay node recognizes the hierarchical labels thereby to label-switch using all hierarchical labels.
Abstract:
A path calculation order determining method executed by a calculating apparatus for calculating a shortest path between a node pair in a network, using information on calculated shortest paths between other node pairs, the method including: a step storing calculated shortest path group information on shortest path groups each including calculated shortest paths from a starting node to one or more terminating nodes except the starting node, and topology information of the network, in a memory medium; and a calculation step of calculating shortest paths, starting from its starting node other than the starting node on the calculated shortest paths and having the most nodes that are located downstream therefrom, and terminating at nodes other than its starting node, using the calculated shortest path group information or the topology information for a path not included in the calculated shortest path group.
Abstract:
A calculating apparatus calculates a shortest path connecting two nodes of a network. A shortest-path group, which is a set of shortest paths having node Y as their starting points, can be calculated at once by having calculated a shortest path having node Y as its starting point for each of other nodes. When the shortest-path group having node Y as the starting point is calculated and further if a group of shortest paths having node X as their starting points is stored beforehand in a storing unit, then path portions, which belong to the group of shortest paths having node X as the starting points and further which are paths extending from node Y to the nodes located downstream from node Y, are utilized as part of a result of calculation of the shortest path group having node Y as the starting point.
Abstract:
A calculating apparatus calculates a shortest path connecting two nodes of a network. A shortest-path group, which is a set of shortest paths having node Y as their starting points, can be calculated at once by having calculated a shortest path having node Y as its starting point for each of other nodes. When the shortest-path group having node Y as the starting point is calculated and further if a group of shortest paths having node X as their starting points is stored beforehand in a storing unit, then path portions, which belong to the group of shortest paths having node X as the starting points and further which are paths extending from node Y to the nodes located downstream from node Y, are utilized as part of a result of calculation of the shortest path group having node Y as the starting point.
Abstract:
A path calculation order deciding method that is implemented by a calculating apparatus (1) which calculates, by use of calculated shortest path between a node pair about a network comprising a plurality of nodes, a shortest path between other node pair comprises: wherein the calculating apparatus comprises a memory medium storing shortest path group information which represents calculated shortest paths each of which is shortest path between the node pair, whose starting nodes are identical and terminating nodes are different from one another, by use of the plurality of nodes and paths between the node pairs and also storing topology information representing topology of the plurality of nodes, and a calculation unit, a calculation step that the calculation unit selects each particular nodes of the plurality of nodes, which is different from the starting node, in decreasing order of the numbers of the downstream nodes from the particular node in calculated shortest path between the node pair represented by the shortest path group information; and calculates, in response to each selection of the particular node, the shortest path between the node pair, which has, as its starting point, the selected particular node and has, as its terminating point, other each node of the plurality of nodes, by use of calculated shortest path between other node pair and the topology information.