摘要:
Disclosed are a graphene composite nanofiber and a preparation method thereof. The graphene composite nanofiber is produced by dispersing graphenes to at least one of a surface and inside of a polymer nanofiber or a carbon nanofiber having a diameter of 1˜1000 nm, and the graphenes include at least one type of monolayer graphenes, and multilayer graphenes having a thickness of 10 nm or less. The graphene composite nanofiber can be applied to various industrial fields, e.g., a light emitting display, a micro resonator, a transistor, a sensor, a transparent electrode, a fuel cell, a solar cell, a secondary cell, and a composite material, owing to a unique structure and property of graphene.
摘要:
An ultrafine continuous fibrous ceramic filter, which comprises a filtering layer of a fibrous porous body, wherein the fibrous porous body comprises continuous ultrafine fibers of metal oxide which are randomly arranged and layered, and powdery nano-alumina incorporated into the ultrafine fibers or coated thereon, the ultrafine fibers being obtained by electrospinning a spinning solution comprising a metal oxide precursor sol-gel solution, and optionally, a polymer resin, and sintering the electrospun fibers, in which the ultrafine fibers have an average diameter of 10˜500 nm, and the fibrous porous body has a pore size of maximum frequency ranging from 0.05 to 2 μm, exhibits high filtration efficiency at a high flow rate, and can be regenerated.
摘要:
A dye-sensitized solar cell comprising a semiconductor electrode prepared by spraying a metal oxide nanoparticle dispersion on a conductive substrate using an electric field to form a metal oxide nanoball layer which is composed of agglomerated metal oxide nanoparticles and has a high porosity and specific surface area, exhibits improved photoelectric properties even when a gel or solid electrolyte is used.
摘要:
Disclosed are to provide a modified carbon nanotube obtained by reacting a polymer to a carbon nanotube by a radical graft method, capable of minimizing lowering of a physical property of a carbon nanotube caused when being modified, and capable of enhancing dispersibility of the carbon nanotube and an adhesion strength between carbon nanotubes, the polymer having a molecular weight controlled by a living radical polymerization and still having a living radical end group.Also disclosed are to provide a carbon nanotube electrode and a dye-sensitized solar cell using the same, capable of forming a carbon nanotube film having a thickness thinner than that of the conventional electrode by directly spraying, on a substrate, by an electro-spray process, a uniform dispersion solution that the modified carbon nanotube is dispersed in a proper solvent without requiring an additional organic binder, capable of exhibiting an excellent catalytic characteristic owing to a close adhesion strength between carbon nanotubes and an increased relative density of the carbon nanotube film, and capable of implementing an excellent long-term stability owing to a strong bonding force between a carbon nanotube and a substrate.
摘要:
The present invention discloses an improved electrode for a supercapacitor and a method of preparation thereof. The inventive electrode comprises a collector, a carbon substrate disposed on the collector comprising ultrafine carbon fibers having a specific surface area of at least 200 m2/g (BET) and a d002 value of 0.36 nm or less, and a metal oxide thin layer formed on the carbon substrate. The electrode of the subject invention retains a high specific capacitance during high-speed charging and discharging cycles.
摘要:
An ultrafine fiber-based composite separator comprising a fibrous porous body which comprises ultrafine metal oxide/polymer composite fibers, or ultrafine metal oxide fibers and a polymer resin coating layer formed on the surface thereof, the ultrafine fibers being continuously randomly arranged and layered, and obtained by electrospinning a metal oxide precursor sol-gel solution or a mixture of a metal oxide precursor sol-gel solution and a polymer resin solution, wherein the surface of the metal oxide/polymer composite fibers has a uniform mixing composition of the metal oxide and the polymer resin, in which the separator has a heat shrinkage rate at 150˜250° C. of 10% or less and does not break down due to melting at a temperature of 200° C. or lower, has low heat shrinkage rate, and superior heat resistance and ionic conductivity, being capable of providing improved cycle and power properties when used in manufacturing a battery.