摘要:
Disclosed herein is a computer-readable medium and method of a mobile platform detecting and tracking dynamic objects in an environment having the dynamic objects. The mobile platform acquires a three-dimensional (3D) image using a time-of-flight (TOF) sensor, removes a floor plane from the acquired 3D image using a random sample consensus (RANSAC) algorithm, and individually separates objects from the 3D image. Movement of the respective separated objects is estimated using a joint probability data association filter (JPDAF).
摘要:
A volume cell (VOXEL) map generation apparatus includes an inertia measurement unit to calculate inertia information by calculating inertia of a volume cell (VOXEL) map generator, a Time of Flight (TOF) camera to capture an image of an object, thereby generating a depth image of the object and a black-and-white image of the object, an estimation unit to calculate position and posture information of the VOXEL map generator by performing an Iterative Closest Point (ICP) algorithm on the basis of the depth image of the object, and to recursively estimate a position and posture of the VOXEL map generator on the basis of VOXEL map generator inertia information calculated by the inertia measurement unit and VOXEL map generator position and posture information calculated by the ICP algorithm, and a grid map construction unit to configure a grid map based on the recursively estimated VOXEL map generator position and posture.
摘要:
Disclosed herein is a method of building a map of a mobile platform moving in a dynamic environment and detecting an object using a 3D camera sensor, e.g., an IR TOF camera sensor, for localization. A localization technology to separate and map a dynamic object and a static object is applied to a mobile platform, such as an unmanned vehicle or a mobile robot. Consequently, the present method is capable of accurately building map information based on the static object in a dynamic environment having a large number of dynamic objects and achieving a dynamic object avoidance or chasing function using position information acquired to build the map.
摘要:
A moving robot and a method to build a map for the same, wherein a 3D map for an ambient environment of the moving robot may be built using a Time of Flight (TOF) camera that may acquire 3D distance information in real time. The method acquires 3D distance information of an object present in a path along which the moving robot moves, accumulates the acquired 3D distance information to construct a map of a specific level and stores the map in a database, and then hierarchically matches maps stored in the database to build a 3D map for a set space. This method may quickly and accurately build a 3D map for an ambient environment of the moving robot.
摘要:
A robot and a method for creating a robot path. The method for planning the robot path includes generating a depth map including a plurality of cells by measuring a distance to an object, dividing a boundary among the plurality of cells into a plurality of partitions according to individual depth values of the cells, and extracting a single closed loop formed by the divided boundary, obtaining a position and shape of the object located at a first time through the extracted single closed loop, calculating a probability that the object is located at a second time after t seconds on the basis of the obtained position and shape of the object located at the first time, and creating a moving path simultaneously while avoiding the object according to the calculated probability, thereby creating an optimum path without colliding with the object.
摘要:
Disclosed herein are a feature point used to localize an image-based robot and build a map of the robot and a method of extracting and matching an image patch of a three-dimensional (3D) image, which is used as the feature point. It is possible to extract the image patch converted into the reference image using the position information of the robot and the 3D position information of the feature point. Also, it is possible to obtain the 3D surface information with the brightness values of the image patches to obtain the match value with the minimum error by a 3D surface matching method of matching the 3D surface information of the image patches converted into the reference image through the ICP algorithm.
摘要:
Disclosed herein are a markerless augmented reality system and method for extracting feature points within an image and providing augmented reality using a projective invariant of the feature points. The feature points are tracked in two images photographed while varying the position of an image unit, a set of feature points satisfying a plane projective invariant is obtained from the feature points, and augmented reality is provided based on the set of feature points. Accordingly, since the set of feature points satisfies the plane projective invariant even when the image unit is moved and functions as a marker, a separate marker is unnecessary. In addition, since augmented reality is provided based on the set of feature points, a total computation amount is decreased and augmented reality is more efficiently provided.
摘要:
A system and method for extracting 3D coordinates, the method includes obtaining, by a stereoscopic image photographing unit, two images of a target object, and obtaining 3D coordinates of the object on the basis of coordinates of each pixel of the two images, measuring, by a Time of Flight (TOF) sensor unit, a value of a distance to the object, and obtaining 3D coordinates of the object on the basis of the measured distance value, mapping pixel coordinates of each image to the 3D coordinates obtained through the TOF sensor unit, and calibrating the mapped result, determining whether each set of pixel coordinates and the distance value to the object measured through the TOF sensor unit are present, calculating a disparity value on the basis of the distance value or the pixel coordinates, and calculating 3D coordinates of the object on the basis of the calculated disparity value.
摘要:
An image-based localization feature point registration apparatus includes a camera to capture an image, a feature point extractor to extract a feature point from the captured image, a calculator to calculate depth information about the feature point according to whether the feature point is one of two-dimensional (2D) and a three-dimensional (3D) corner, and a feature point register to register 3D coordinates of the feature point based on the depth information about the feature point and image coordinates of the feature point.
摘要:
A robot and a method for creating a robot path. The method for planning the robot path includes generating a depth map including a plurality of cells by measuring a distance to an object, dividing a boundary among the plurality of cells into a plurality of partitions according to individual depth values of the cells, and extracting a single closed loop formed by the divided boundary, obtaining a position and shape of the object located at a first time through the extracted single closed loop, calculating a probability that the object is located at a second time after t seconds on the basis of the obtained position and shape of the object located at the first time, and creating a moving path simultaneously while avoiding the object according to the calculated probability, thereby creating an optimum path without colliding with the object.