摘要:
Better performance can be provided for a display system that has semiconductor microelectronic components such as demultiplexors, gate line and data line drivers, and pixel switches formed on the display substrate, e.g., a glass substrate that constitutes part of an active matrix display panel. A threshold voltage of a constituent transistor of one of these microelectronic components, e.g., a pixel thin film transistor (TFT) that is part of a particular display element, may be measured using a replica component that emulates the behavior of the component.
摘要:
Better performance can be provided for a display system that has semiconductor microelectronic components such as demultiplexors, gate line and data line drivers, and pixel switches formed on the display substrate, e.g., a glass substrate that constitutes part of an active matrix display panel. A gate source capacitance of a constituent transistor of one of these microelectronic components, e.g., a pixel thin film transistor (TFT) that is part of a particular display element, may be measured using a replica component that emulates the behavior of the component.
摘要:
Better performance can be provided for a display system that has semiconductor microelectronic components such as demultiplexors, gate line and data line drivers, and pixel switches formed on the display substrate, e.g., a glass substrate that constitutes part of an active matrix display panel. A gate source capacitance of a constituent transistor of one of these microelectronic components, e.g., a pixel thin film transistor (TFT) that is part of a particular display element, may be measured using a replica component that emulates the behavior of the component.
摘要:
Better performance can be provided for a display system that has semiconductor microelectronic components such as demultiplexors, gate line and data line drivers, and pixel switches formed on the display substrate, e.g., a glass substrate that constitutes part of an active matrix display panel. A constituent transistor of one of these microelectronic components, e.g., a pixel thin film transistor (TFT) that is part of a particular display element, may be characterized using a replica component that emulates the behavior of the component.
摘要:
Methods and devices employing circuitry for reducing power usage of a touch-sensitive display are provided. In one example, a method includes receiving power for a display of an electronic device. The method also includes powering a touch subsystem and a display subsystem of the display. The method includes, in a standard display mode, storing a frame of data in pixels of the display subsystem during a first period of time. The method also includes, in a low power display mode, storing a frame of data in pixels of the display subsystem during a second period of time. The second period of time is not equal to the first period of time. The method includes detecting a touch of the display via the touch subsystem between each synchronization signal of a plurality of synchronization signals received by the display.
摘要:
Systems, methods, and devices for performing column inversion using reordered image data are provided. In one example, an electronic display may include a display panel with columns of pixels and driver circuitry to drive the pixels using column inversion. The driver circuitry may drive pixels of a first superpixel in a first color order and drive pixels of an adjacent second superpixel in a second color order, such that more pixels are driven sequentially at a common polarity than would have been driven sequentially at the common polarity were the pixels of the first superpixel driven at the same color order as the pixels of the second superpixel.
摘要:
Systems, methods, and devices for performing column inversion using 2-column demultiplexers are provided. In one example, an electronic display may include a display panel with columns of pixels configured to be programmed with frames of image data and display driver circuitry. The display driver circuitry may include three demultiplexers, each respectively coupled to one pixel column of a first superpixel and one pixel column of a second superpixel. Each of the three demultiplexers may receive amplified image data of a single polarity per frame.
摘要:
Systems, methods, and devices for performing column inversion using 2-column demultiplexers are provided. In one example, an electronic display may include a display panel with columns of pixels configured to be programmed with frames of image data and display driver circuitry. The display driver circuitry may include three demultiplexers, each respectively coupled to one pixel column of a first superpixel and one pixel column of a second superpixel. Each of the three demultiplexers may receive amplified image data of a single polarity per frame.
摘要:
Systems, methods, and devices for performing column inversion using reordered image data are provided. In one example, an electronic display may include a display panel with columns of pixels and driver circuitry to drive the pixels using column inversion. The driver circuitry may drive pixels of a first superpixel in a first color order and drive pixels of an adjacent second superpixel in a second color order, such that more pixels are driven sequentially at a common polarity than would have been driven sequentially at the common polarity were the pixels of the first superpixel driven at the same color order as the pixels of the second superpixel.
摘要:
Present techniques involve methods and systems of inversion patterns for pixels in a display. Inversion techniques involve driving image signals having a first polarity to data lines of a pixel matrix during a first time period and driving image signals having an opposite polarity to the data lines during a second time period. In some embodiments, the pixels may be configured to have electrodes having only two finger electrodes, thus widening the distance between electrodes and decreasing the susceptibility for crosstalk between pixels. In some embodiments, horizontal cross-talk of electromagnetic fields between pixels may be further reduced by configuring the data line driving scheme such that voltage polarity is flipped for the pixels along every two, three, or more data line columns. Furthermore, a Z inversion pattern may be employed to reduce the occurrence of undesirable display artifacts.