摘要:
Channel state information is reported in periodic and aperiodic reports for multiple component carriers or serving cells. Channel state information may be reported for a subset of aggregated downlink carriers or serving cells. For an aperiodic report, the carrier(s)/serving cell(s) for which channel state information is reported are determined based on the request for the aperiodic report. When a CQI/PMI/RI report and a HARQ ACK/NACK report coincide in a subframe, the HARQ ACK/NACK report is transmitted on PUCCH, and the CQI/PMI/RI report is transmitted on PUSCH.
摘要:
Channel state information is reported in periodic and aperiodic reports for multiple component carriers or serving cells. Channel state information may be reported for a subset of aggregated downlink carriers or serving cells. For an aperiodic report, the carrier(s)/serving cell(s) for which channel state information is reported are determined based on the request for the aperiodic report. When a CQI/PMI/RI report and a HARQ ACK/NACK report coincide in a subframe, the HARQ ACK/NACK report is transmitted on PUCCH, and the CQI/PMI/RI report is transmitted on PUSCH.
摘要:
Methods and systems for transmitting uplink control information and feedback are disclosed for carrier aggregation systems. A user equipment device may be configured to transmit uplink control information and other feedback for several downlink component carriers using one or more uplink component carriers. The user equipment device may be configured to transmit such data using a physical uplink control channel rather than a physical uplink shared channel. The user equipment device may be configured to determine the uplink control information and feedback data that is to be transmitted, the physical uplink control channel resources to be used to transmit the uplink control information and feedback data, and how the uplink control information and feedback data may be transmitted over the physical uplink control channel.
摘要:
Embodiments contemplate methods and devices that may select uplink (UL) transmission resources for transmitting uplink control information (UCI). A determination may be made that UCI should be transmitted. A physical channel resource for transmission of the UCI may be selected and a wireless transmit/receive unit (WRTU) may transmit the UCI over a physical uplink channel capable of supporting multiple component carriers using the selected physical channel resource. The selection of the physical channel resource may include at least one of: selecting a pre-determined UL component carrier (CC) for uplink transmission on a physical uplink control shared channel (PUSCH) upon a PUSCH resource being available in a subframe, or, selecting a pre-determined UL CC for uplink transmission on a physical uplink control channel (PUCCH) capable of UCI transmission in the subframe upon a PUSCH resource not being available in the subframe.
摘要:
Methods and systems for transmitting uplink control information and feedback are disclosed for carrier aggregation systems. A user equipment device may be configured to transmit uplink control information and other feedback for several downlink component carriers using one or more uplink component carriers. The user equipment device may be configured to transmit such data using a physical uplink control channel rather than a physical uplink shared channel. The user equipment device may be configured to determine the uplink control information and feedback data that is to be transmitted, the physical uplink control channel resources to be used to transmit the uplink control information and feedback data, and how the uplink control information and feedback data may be transmitted over the physical uplink control channel.
摘要:
Methods and systems for transmitting scheduling requests in an LTE Advanced system are disclosed. Scheduling requests may be superimposed on HARQ ACK/NACK by multiplying the HARQ ACK/NACK by a value. Alternatively, scheduling requests may be channel-coded and multiplexed with other uplink control information. Scheduling requests can also be superimposed on reference signals by multiplying a reference signal by a value or by modulating a reference signal with a cyclic shift. Scheduling requests may also be jointly coded with HARQ ACK/NACK prior to transmission. Alternatively, ACK/NACK responses may be transmitted on assigned ACK/NACK PUCCH resources for a negative scheduling request transmission and on assigned scheduling request PUCCH resources for a positive scheduling request. Various collision handling mechanisms are also disclosed.
摘要:
Methods and apparatus for addressing wireless transmit/receive unit (WTRU) behavior in response to configuration, configuration parameters and access issues related to the activation/deactivation process when the WTRU may be configured with multiple serving cells or carrier aggregation.
摘要:
Methods and apparatus for addressing wireless transmit/receive unit (WTRU) behavior in response to configuration, configuration parameters and access issues related to the activation/deactivation process when the WTRU may be configured with multiple serving cells or carrier aggregation.
摘要:
Methods and systems for sending and receiving an enhanced downlink control channel are disclosed. The method may include receiving control channel information via an enhanced control channel. The method may also include using the control channel information to receive a shared channel. The method may include detecting the presence of the enhanced control channel in a given subframe. The enhanced control channel may be transmitted over multiple antenna ports. For example, code divisional multiplexing and de-multiplexing and the use of common and UE-specific reference signals may be utilized. New control channel elements may be defined, and enhanced control channel state information (CSI) feedback may be utilized. The presence or absence of legacy control channels may affect the demodulation and or decoding methods. The method may be implemented at a WTRU.
摘要:
Techniques for configuring and switching a resource assignment mode for a plurality of component carriers are disclosed. A wireless transmit/receive unit (WTRU) has a capability of supporting multiple resource assignment modes such that a resource assignment mode is configured for a plurality of component carriers that are allocated for the WTRU, and the WTRU attempts to decode a control channel based on the configured resource assignment mode. The resource assignment mode may be configured for the WTRU via higher layer signaling. The resource assignment mode may be specific to the WTRU, or specific to a component carrier or a group of component carriers. The resource assignment mode may be configured separately for a downlink component carrier and an uplink component carrier. The resource assignment mode includes a separate assignment mode with component carrier indication, a separate assignment mode without component carrier indication, or a joint assignment mode.