摘要:
Described herein are systems and methods for presenting building information. In overview, the technologies described herein provide relationships between Building Information Modeling (BIM) data (which includes building schematics defined in terms of standardized three dimensional models) and Building Management System (BMS) data (which includes data indicative of the operation of building components such as HVAC components and the like). Some embodiments use relationships between these forms of data thereby to assist technicians in identifying the physical location of particular pieces of equipment, for example in the context of performing inspections and/or maintenance. In some cases this includes the provision of 2D and/or 3D maps to portable devices, these maps including the location of equipment defined both in BIM and BMS data. In some cases, augmented reality technology is applied thereby to provide richer access to positional information.
摘要:
Described herein are systems and methods for presenting building information. In overview, the technologies described herein provide relationships between Building Information Modeling (BIM) data (which includes building schematics defined in terms of standardized three dimensional models) and Building Management System (BMS) data (which includes data indicative of the operation of building components such as HVAC components and the like). Some embodiments use relationships between these forms of data thereby to assist technicians in identifying the physical location of particular pieces of equipment, for example in the context of performing inspections and/or maintenance. In some cases this includes the provision of 2D and/or 3D maps to portable devices, these maps including the location of equipment defined both in BIM and BMS data. In some cases, augmented reality technology is applied thereby to provide richer access to positional information.
摘要:
An approach for monitoring energy consumption and detecting preventive maintenance issues in a system having control loops and associated devices. Settling time and error value in a control loop may be indicative of the loop's efficiency. Error value may be a difference between a measurement of a parameter and a setpoint for the parameter. Degradation of a loop's efficiency may be an indication of increased energy consumption by the system. Such degradation may also be indicative of a future defect in a control loop or devices associated with the control loop. Thus, the present approach may provide for energy monitoring and preventive maintenance of the system.
摘要:
An approach for monitoring energy consumption and detecting preventive maintenance issues in a system having control loops and associated devices. Settling time and error value in a control loop may be indicative of the loop's efficiency. Error value may be a difference between a measurement of a parameter and a setpoint for the parameter. Degradation of a loop's efficiency may be an indication of increased energy consumption by the system. Such degradation may also be indicative of a future defect in a control loop or devices associated with the control loop. Thus, the present approach may provide for energy monitoring and preventive maintenance of the system.
摘要:
A system receives an energy demand response schedule, one or more user preferences, and one or more predicted environmental variables into a computer processor. The system generates an optimized energy schedule as a function of the demand response schedule, the user preferences, and the predicted environmental variables. The optimized energy schedule includes one or more of a set point temperature variation in one or more zones, an air handling unit set point temperature variation, a chilled water set point temperature variation, a carbon dioxide level set point variation, a pre-cooling time shift, a pre-cooling duration variation, and a load based optimized chiller schedule. The system transmits the optimized energy schedule to a building management server.
摘要:
A system receives an energy demand response schedule, one or more user preferences, and one or more predicted environmental variables into a computer processor. The system generates an optimized energy schedule as a function of the demand response schedule, the user preferences, and the predicted environmental variables. The optimized energy schedule includes one or more of a set point temperature variation in one or more zones, an air handling unit set point temperature variation, a chilled water set point temperature variation, a carbon dioxide level set point variation, a pre-cooling time shift, a pre-cooling duration variation, and a load based optimized chiller schedule. The system transmits the optimized energy schedule to a building management server.