Abstract:
A manufacturing method of a touch control display device is disclosed. The method includes forming a thin film transistor element layer; forming and patterning a common electrode layer on the thin film transistor element layer to form common electrodes, forming a third insulation layer on the common electrode and the thin film transistor element layer, forming and patterning a conversion layer on the third insulation layer to form conversion lines, and forming on a first via hole that exposes at least a portion of a gate line, and forming a second via hole that exposes at least a portion of the common electrode. Further, first conversion lines are electrically connected to the gate lines via the first via hole, and second conversion lines are electrically connected to the common electrode via the second via hole.
Abstract:
The present disclosure provides a flexible display panel including a display area and a non-display area, and a bending area is arranged therebetween. The flexible display panel further includes a flexible substrate and a thin film transistor layer. The thin film transistor layer includes a semi-conductor layer, a gate electrode insulation layer, a gate electrode layer, an insulation interlayer and a source-drain electrode metal layer. The flexible display panel includes a touch layer arranged on one side of the thin film transistor layer away from the flexible substrate. The touch layer includes a first and second touch metal layer. The flexible display panel further includes signal transmission lines including at least two parallel wiring layers in the bending area. Each wiring layer is fabricated in a same layer with at least two of the source-drain electrode metal layer, the first touch metal layer, and the second touch metal layer.
Abstract:
An organic light-emitting display panel, divided into a display region and a non-display region surrounding the display region, includes a substrate; an array layer formed over the substrate; a pixel defining layer formed on the surface of the array layer away from the substrate; and a plurality of organic light-emitting devices formed in a plurality of openings of the pixel defining layer. The plurality of organic light-emitting devices are disposed in the display region, and each organic light-emitting device includes an anode, an organic light-emitting layer, and a cathode sequentially formed on the substrate. The organic light-emitting display panel also includes a plurality of support units disposed in the non-display region. At least one support unit of the plurality of support units is disposed on the surface of the pixel defining layer away from the substrate.
Abstract:
An electromagnetic-type touch substrate is disclosed. The electromagnetic-type touch substrate includes a substrate having a display region and a non-display region, and a first conductive layer formed on a first side of the substrate, where the first conductive layer includes a plurality of first electromagnetic induction coils forming loops extending in a first direction. The electromagnetic-type touch substrate also includes a second conductive layer formed on a second side of the substrate, where the second conductive layer includes a plurality of second electromagnetic induction coils forming loops extending in a second direction. In addition, the first direction is perpendicular to the second direction.
Abstract:
One aspect of the present disclosure provides a display panel and a display device. The display panel includes an array substrate, an opposite substrate disposed opposite to the array substrate, and a sieve plate between the array substrate and opposite substrate. The sieve plate includes sieve holes penetrating the sieve plate along the thickness direction of the display panel. The display panel further includes electrophoretic particles that include first-color electrophoretic particles. The particle size of at least one of the first-color electrophoretic particles is smaller than the size of the sieve hole. The first-color electrophoretic particle may freely pass through the sieve hole toward the output surface of the display panel.
Abstract:
A display panel and a display apparatus are provided. An exemplary display panel includes a flexible display substrate; and a protective member covering a surface of the flexible display substrate. The protective member includes a first protective layer and a protective sealant; and a sidewall surface of the first protective layer adjacent to the protective sealant includes at least one first groove member. The first protective sealant and the first groove member clutch with each other; the display panel includes a first non-folding region and a folding region; the first protective layer is disposed in the first non-folding region; and the protective sealant is disposed in the folding region.
Abstract:
A flexible display apparatus is provided, comprising a flexible substrate including a bending area, an insulating layer formed on the flexible substrate and including at least one cutout at the bending area, and a plurality of wires configured following a surface shape of the insulating layer at the bending area. The at least one cutout includes sloped sidewalls protruding away from the flexible substrate.
Abstract:
Provided are a flexible display panel and a flexible display device, in which a non-display area surrounds a display area. A concave area protrudes along a direction away from interior of display area. A convex area has a folding axis parallel to a first edge. The non-display area includes a fan-out area, in which lead wires are provided. Each lead wire has a first end and a second end. There are signal traces each extending along a first direction provided in display area. The signal traces are electrically connected to first ends of lead wires. The convex area and concave area are arranged along a second direction. The second direction intersects first direction. A driving chip is included, which is a ball grid array package driving chip and is arranged in concave area where lead wires are away from first edge and electrically connected to second ends of lead wires.