Abstract:
A display panel and a display apparatus are provided. An exemplary display panel includes a flexible display substrate; and a protective member covering a surface of the flexible display substrate. The protective member includes a first protective layer and a protective sealant; and a sidewall surface of the first protective layer adjacent to the protective sealant includes at least one first groove member. The first protective sealant and the first groove member clutch with each other; the display panel includes a first non-folding region and a folding region; the first protective layer is disposed in the first non-folding region; and the protective sealant is disposed in the folding region.
Abstract:
A flexible display apparatus is provided, comprising a flexible substrate including a bending area, an insulating layer formed on the flexible substrate and including at least one cutout at the bending area, and a plurality of wires configured following a surface shape of the insulating layer at the bending area. The at least one cutout includes sloped sidewalls protruding away from the flexible substrate.
Abstract:
An array substrate includes a plurality of data lines; a plurality of scanning lines intersecting the data lines to define pixel units; a plurality of pixel electrodes within the pixel units; and a plurality of touch electrodes having a grid shape and formed by a plurality of first sub-electrodes and a plurality of second sub-electrodes intersecting each other. Projections of the first sub-electrodes and the second sub-electrodes onto a layer containing the pixel electrodes are respectively located between adjacent pixel electrodes, or the first sub-electrodes and the second sub-electrodes are respectively located between adjacent pixel electrodes. The product of the resistance of the touch electrode and the load capacitance between the touch electrode, the source electrode and the first metal is reduced, which reduces the charging time of the touch driving signal and enables the touch state and the display state to operate in a time division manner.
Abstract:
The present disclosure provides an integrated touch control display panel. The integrated touch control display panel includes a display region and a peripheral circuit region located on at least one side of the display region. The display region includes a plurality of stripe shaped touch control electrodes that extend in a first direction and are sequentially arranged in a second direction which intersects with the first direction. Defining a width of a gap between the peripheral circuit region and a closest stripe shaped touch control electrode in the second direction as a first width, and defining a width of a gap between any two adjacent stripe shaped touch control electrodes as a second width, the first width is greater than the second width.
Abstract:
A touch liquid crystal display is disclosed. The display includes a TFT array substrate, and an opposite substrate opposite to the TFT array substrate. The TFT array substrate and the opposite substrate collectively define a display area and a non-display area. In addition, the opposite substrate includes a first substrate, a plurality of first electrodes, and a plurality of second electrodes, where the plurality of first electrodes are located in the display area of the first substrate, and the plurality of second electrodes are located in the non-display area of the first substrate. The TFT array substrate includes a second substrate, and a plurality of third electrodes, where the third electrodes are located in the display area of the second substrate and are opposite the first electrodes, and where the third electrodes are common electrodes of the TFT array substrate.
Abstract:
A touch display panel is disclosed. The touch display panel includes first touch electrodes and second touch sub-electrodes. The first touch electrodes are insulated from and intersect with the second touch sub-electrodes. At least two of the first touch electrodes are connected as at least one first touch electrode group, where each first touch electrode group is connected with a touch drive detection unit through a wire. In addition, second touch sub-electrodes corresponding to each of the first touch electrode groups form a second touch electrode group. Each second touch electrode group includes second touch electrode units, each including at least two second touch sub-electrodes. Each of the second touch sub-electrodes is connected with the touch drive detection unit through a different wire. Additionally, the touch drive detection unit transmits a touch drive signal to or receives a detection signal from the first touch electrodes or the second touch sub-electrodes.
Abstract:
The present disclosure relates to a touch film, a touch panel, a touch display device and a preparing method thereof, in which breakage probability in a metal portion can be reduced, thereby improving the touch performance. The touch film comprises a flexible substrate made of polyimide, a metal layer, and an organic film arranged therebetween and having a water drop contact angle less than 80°. The touch film further comprises a touch electrode layer comprising multiple groups of first touch electrodes and multiple groups of second touch electrodes, wherein each group of the first touch electrodes comprises a plurality of first touch electrodes arrayed in a second direction; and each group of the second touch electrodes comprises a plurality of second touch electrodes arrayed in a first direction. The metal layer comprises metal connection lines for electrically connecting adjacent first touch electrodes.
Abstract:
A Micro LED display panel, a method for fabricating the Micro LED display panel and a display device are provided. When the LED chip array is transferred, it may only be required to embed the LED chip array into the adhesive film layer. The LED chip array is bonded to the array substrate through the adhesive film layer. Then, unnecessary portions of the adhesive film layer and unnecessary LED chips are removed. It is not necessary to attach LED chips in the LED chip array one by one to the substrate by soldering, in which case the process of fabricating the Micro LED display panel is simplified, the difficulty in fabricating the Micro LED display panel is reduced, the influence of the high temperature generated by the soldering process on the LED chips is avoided, and damage to the LED chips during the transfer process is avoided.
Abstract:
A touch control display and a controlling method are provided. The display comprises a TFT array substrate; an opposite substrate; a cover glass disposed on an outside surface of the opposite substrate, wherein the cover glass has an inner surface facing the opposing substrate and an outside surface, and the cover glass, the TFT array substrate, and the opposite substrate collectively define a display area and a non-display area; first electrodes disposed in the display area of the opposite substrate; second electrodes disposed in the non-display area of the cover glass, and on the inner surface of the cover glass; and third electrodes disposed between the opposite substrate and the TFT array substrate. The third electrodes are disposed opposite to the plurality of first electrodes, and at least one of the plurality of third electrodes is multiplexed as a common electrode of the TFT array substrate.
Abstract:
A display panel, a method for manufacturing the display panel, and a display device including the display panel are provided. The display panel includes: a thin film transistor array layer, and a light-emitting function layer at a side of the thin film transistor array layer. The thin film transistor array layer includes a planarization layer, an electrode layer, a first insulation layer, an active layer and a buffer layer. The electrode layer includes at least one first electrode and second electrode, and each first electrode includes a connection portion and an electrode portion which are connected to each other. The light-emitting function layer includes first contact electrodes and light-emitting elements. Heat generated by the light-emitting function layer is conducted to electrode portion of the first electrode through the connection portion of the first electrode and is uniformly distributed on the connection portion and the electrode portion.