Abstract:
A electrical connector includes a housing and a plurality of contacts within the housing configured for mating engagement with mating contacts of a mating connector. The electrical connector also includes a compensation component housed within the housing. The compensation component has a substrate with a first trace plane and a second trace plane, and the compensation component has a plurality of traces arranged on the first trace plane. The traces are electrically connected to selected ones of the contacts. At least one of the traces includes a compensation loop arranged on the first trace plane, and at least one of the traces includes a compensation loop arranged on the second trace plane. The compensation loop provides at least one of electrical and thermal compensation.
Abstract:
An electrical connector includes a front housing holding a plurality of contacts and holding a cutting blade proximate to a rear of the front housing. The electrical connector also includes a rear housing having a wire organizer at a front of the rear housing that has a plurality of wire channels configured to receive corresponding wires therein. The rear housing has an outer support wall spaced apart from, and arranged outward of, the wire channels, where the outer support wall has a front edge. The wire channels extending along wire channel axes that extend across the front edge. During mating of the rear housing with the front housing, the cutting blade is configured to trim the wires extending from the wire organizer and is positioned between the outer support wall and the wire organizer. The wires are terminated to the contacts when the front housing and the rear housing are mated.
Abstract:
An electrical connector includes a housing and a plurality of contacts within the housing that are configured to engage with mating contacts of a mating connector. The contacts form at least a first differential pair and a second differential pair. The electrical connector also includes a circuit board housed within the housing. The circuit board has a substrate body formed from a dielectric material and includes a first trace electrically coupled to a contact of the first differential pair and a second trace electrically coupled to a contact of the second differential pair. At least one of the first and second traces is an open-ended trace. The circuit board also has a non-ohmic plate that is positioned adjacent to the traces. The plate is positioned to electromagnetically couple the first and second traces to each other and the non-ohmic plate and traces are configured for a desired electrical performance.
Abstract:
An electrical connector includes a housing and a plurality of contacts within the housing that are configured to engage with mating contacts of a mating connector. The contacts form at least a first differential pair and a second differential pair. The electrical connector also includes a circuit board housed within the housing. The circuit board has a substrate body formed from a dielectric material and includes a first trace electrically coupled to a contact of the first differential pair and a second trace electrically coupled to a contact of the second differential pair. At least one of the first and second traces is an open-ended trace. The circuit board also has a non-ohmic plate that is positioned adjacent to the traces. The plate is positioned to electromagnetically couple the first and second traces to each other and the non-ohmic plate and traces are configured for a desired electrical performance.
Abstract:
An interface module includes a housing configured to hold at least one modular jack. The housing is configured to be mounted on a panel. The housing includes an electrically conductive portion. An electrically conductive fastener has a housing interface configured to engage the electrically conductive portion of the housing and a panel interface configured to engage an electrically conductive surface of the panel. The electrically conductive fastener creates an electrical connection between the housing and the panel.
Abstract:
An electrical connector includes a back end sub-assembly including a back end housing extending along a longitudinal axis between a forward side and a rearward side. The back end housing defining a plurality of contact zones. At least one contact is held in each of the plurality of contact zones. A shield is provided within each of the plurality of contact zones with each shield at least partially surrounding at least one contact in the corresponding contact zone. Each shield is non-common with and does not electrically engage any other shield in the back end housing.
Abstract:
An interface module includes a housing configured to hold at least one modular jack. The housing is configured to be mounted on a panel. The housing includes an electrically conductive portion. An electrically conductive fastener has a housing interface configured to engage the electrically conductive portion of the housing and a panel interface configured to engage an electrically conductive surface of the panel. The electrically conductive fastener creates an electrical connection between the housing and the panel.
Abstract:
An electrical connector includes a housing and a plurality of electrical mating contacts held within the housing. Each of the mating contacts extends from a first end portion to a second end portion. Each of the mating contacts has an intermediate portion extending between the first and second end portions. An electrical compensation component is held within the housing. The electrical compensation component includes a circuit board. The electrical compensation component is electrically connected to at least one of the mating contacts at a location along the intermediate portion that is spaced a distance from the first and second end portions.
Abstract:
An electrical connector includes a housing and a plurality of electrical mating contacts held within the housing. Each of the mating contacts extends from a first end portion to a second end portion. Each of the mating contacts has an intermediate portion extending between the first and second end portions. An electrical compensation component is held within the housing. The electrical compensation component includes a circuit board. The electrical compensation component is electrically connected to at least one of the mating contacts at a location along the intermediate portion that is spaced a distance from the first and second end portions.
Abstract:
A electrical connector includes a housing and a plurality of contacts within the housing configured for mating engagement with mating contacts of a mating connector. The electrical connector also includes a compensation component housed within the housing. The compensation component has a substrate with a first trace plane and a second trace plane, and the compensation component has a plurality of traces arranged on the first trace plane. The traces are electrically connected to selected ones of the contacts. At least one of the traces includes a compensation loop arranged on the first trace plane, and at least one of the traces includes a compensation loop arranged on the second trace plane. The compensation loop provides at least one of electrical and thermal compensation.