Abstract:
An improved architecture for efficiently calculating a discrete wavelet transform is presented. The present system appreciates the associated redundancies of calculations and proposes a topology for eliminating such redundant calculations through the use of storing and making such previously calculated coefficients available in successive wavelet coefficient calculations. The present system while recognizing redundant calculations and performing storage operations, also provides a pipelined architecture whereby the wavelet coefficients are calculated and combined for use in a wavelet packet tree architecture.
Abstract:
This invention describes a novel method and system that implements wavelet packet trees and inverse wavelet packet trees. A modified Recursive Pyramid Algorithm (RPA) is advanced by this invention. The algorithm uses a filter that changes its size at each given octave of the wavelet packet tree. This filter may also be used in the reconstruction, synthesis, or inverse wavelet packet tree using RPA. The invention reduces the cost of implementing wavelet packet trees by using the same hardware for each octave and thereby offers superior products at attractive prices.
Abstract:
Messages transmitted between a receiver and a transmitter are used to maximize a communication data rate. In particular, a multicarrier modulation system uses messages that are sent from the receiver to the transmitter to exchange one or more sets of optimized communication parameters. The transmitter then stores these communication parameters and when transmitting to that particular receiver, the transmitter utilizes the stored parameters in an effort to maximize the data rate to that receiver. Likewise, when the receiver receives packets from that particular transmitter, the receiver can utilize the stored communication parameters for reception.
Abstract:
Messages transmitted between a receiver and a transmitter are used to maximize a communication data rate. In particular, a multicarrier modulation system uses messages that are sent from the receiver to the transmitter to exchange one or more sets of optimized communication parameters. The transmitter then stores these communication parameters and when transmitting to that particular receiver, the transmitter utilizes the stored parameters in an effort to maximize the data rate to that receiver. Likewise, when the receiver receives packets from that particular transmitter, the receiver can utilize the stored communication parameters for reception.
Abstract:
A method in a first station comprises monitoring a network allocation vector in a wireless network; using the network allocation vector to predict an access pattern, e.g., periodic access for a given duration, by a second station in the wireless network; and performing a response based on the predicted access pattern. The response may include modifying a MAC layer parameter, e.g., TXOP or a prediction backoff value, and/or a physical layer parameter, in the first station based on the predicted access pattern. The response may include informing a neighboring network of the predicted access pattern, causing the first station to enter a power-saving mode during times based on the predicted access pattern of the second station, or determining whether to connect the first station into the wireless network. The first station and/or second station may include a client station or an access point.
Abstract:
A transmitting method obtains a data packet of a data-type to be transmitted via a computer network to a receiving system; appends a retry flag to the data packet, the retry flag based on the data-type, the retry flag indicating whether the receiving system may attempt a retransmission; and transmits the data packet to the receiving system. When the data-type is one of voice, video or audio data, the retry flag may indicate that the receiving system should not attempt retransmission. The method may also comprise appending an error-correction algorithm ID based on the data-type to the data packet. A receiving method receives the data packet; and when a bit or packet error is identified then initiating a retransmission if the retry flag so commands. When the retry flag indicates that a retransmission should not occur, the receiving method may initiate an error correction algorithm identified in the data packet.
Abstract:
A method and system for facilitating the detection of DTMF tones is disclosed. The method is based on detecting two tones using a modified nonuniform discrete Fourier transform that includes a phase correction term for each DTMF tone and harmonic. The disclosed method is employed by a DTMF detector that includes a sampling module, a computation module, an analysis module, and a decode module. The sampling module samples an input signal from a communication network at a rate sufficient to avoid data loss. The sample signal is then placed through a modified DFT which is more precise than filters or analog devices, particularly those utilizing a Goertzel algorithm. The computation module implements a fast recursive algorithm for completing the necessary computations. The analysis module checks for the present of energy level peaks at the DTMF tones and their harmonics. Once a DTMF signal is verified to contain a DTMF tone, the decode module transmits the,number, letter, or symbol to an interface.
Abstract:
Messages transmitted between a receiver and a transmitter are used to maximize a communication data rate. In particular, a multicarrier modulation system uses messages that are sent from the receiver to the transmitter to exchange one or more sets of optimized communication parameters. The transmitter then stores these communication parameters and when transmitting to that particular receiver, the transmitter utilizes the stored parameters in an effort to maximize the data rate to that receiver. Likewise, when the receiver receives packets from that particular transmitter, the receiver can utilize the stored communication parameters for reception.
Abstract:
Messages transmitted between a receiver and a transmitter are used to maximize a communication data rate. In particular, a multicarrier modulation system uses messages that are sent from the receiver to the transmitter to exchange one or more sets of optimized communication parameters. The transmitter then stores these communication parameters and when transmitting to that particular receiver, the transmitter utilizes the stored parameters in an effort to maximize the data rate to that receiver. Likewise, when the receiver receives packets from that particular transmitter, the receiver can utilize the stored communication parameters for reception.
Abstract:
Messages transmitted between a receiver and a transmitter are used to maximize a communication data rate. In particular, a multicarrier modulation system uses messages that are sent from the receiver to the transmitter to exchange one or more sets of optimized communication parameters. The transmitter then stores these communication parameters and when transmitting to that particular receiver, the transmitter utilizes the stored parameters in an effort to maximize the data rate to that receiver. Likewise, when the receiver receives packets from that particular transmitter, the receiver can utilize the stored communication parameters for reception.