Abstract:
A process for preparing an alkylene oxide comprising contacting an alkyl phenyl hydroperoxide with an alkene in an epoxidation reaction to obtain an alkylene oxide and an alkyl phenyl alcohol, wherein the alkyl phenyl hydroperoxide is prepared by a process comprising reacting an alkyl aryl compound and oxygen to produce a reaction mixture comprising alkyl phenyl hydroperoxide, alkyl aryl compound and oxygen; separating at least a part of the reaction mixture into a product stream comprising alkyl phenyl hydroperoxide and an alkyl aryl compound stream; mixing at least a part of the alkyl aryl compound stream with a basic aqueous solution; separating at least a part of the mixture of alkyl aryl compound and basic aqueous solution with the help of a coalescer to obtain an organic phase containing alkyl aryl compound, and an aqueous phase; and recycling at least a part of the organic phase to the reacting step.
Abstract:
Biomass compaction during hydrothermal digestion of cellulosic biomass solids may become problematic, particularly as the vertical height of a cellulosic biomass charge increases. Compaction may be decreased in a horizontally configured hydrothermal digestion unit. Methods for digesting cellulosic biomass solids may comprise: providing a hydrothermal digestion unit having a length or a width greater than its height and containing a fluid phase digestion medium and a slurry catalyst capable of activating molecular hydrogen; introducing cellulosic biomass solids to the hydrothermal digestion unit; distributing the cellulosic biomass solids laterally within the hydrothermal digestion unit; after or while the cellulosic biomass solids are being distributed, supplying an upwardly directed flow of molecular hydrogen through the cellulosic biomass solids and the fluid phase digestion medium; and heating the cellulosic biomass solids in the presence of the slurry catalyst and the molecular hydrogen, thereby forming an alcoholic component derived from the cellulosic biomass solids.
Abstract:
The present invention is directed to a method which includes the steps of: contacting an oil sand with a suitable solvent to generate a solvated oil sand slurry; separating solvent-diluted bitumen from the solvated oil sand slurry to generate (a) a solvent-diluted bitumen and (b) a slurry with increased solids concentration; filtering the slurry with increased solids concentration; dropping the solids into a pressure reduction vessel wherein the pressure in the pressure reduction vessel is a pressure below a vapor pressure of the solvent; and drying the solids removed from the pressure reduction vessel to produce solids having dry tailings. The method of the present invention may be used to produce a low ash bitumen product and dry tailings from oil sands.
Abstract:
Maintaining long residence times during hydrothermal digestion of cellulosic biomass solids may be complicated by a number of factors, including biomass compaction. Advantages in this regard may be realized by digesting cellulosic biomass solids in an inclined digestion unit. Such methods can comprise: introducing cellulosic biomass solids to a hydrothermal digestion unit comprising one or more inclined surfaces therein; introducing a fluid phase digestion medium containing a slurry catalyst to the hydrothermal digestion unit, the slurry catalyst being capable of activating molecular hydrogen; supplying an upwardly directed flow of molecular hydrogen from a source disposed along each inclined surface as the cellulosic biomass solids descend along each inclined surface; and heating the cellulosic biomass solids as they descend along each inclined surface in the presence of the slurry catalyst and the molecular hydrogen, thereby forming an alcoholic component derived from the cellulosic biomass solids.