摘要:
A freeway routing system that connects interface groups in said field programmable gate array. The freeway system has a first set of routing conductors configured to transfer signals to the input ports of at least one interface group in a first tile of the field programmable gate array and configured to transfer signals from the output ports of other tiles in the field programmable gate array. The first set of conductors include vertical conductors that form intersections horizontal conductors and programmable interconnect elements located at the intersections of the vertical conductors and horizontal conductors in a diagonal orientation to connect each of horizontal conductors to one of the vertical conductors.
摘要:
An inter-tile buffering system for a field programmable gate array (FPGA) comprising a plurality of FPGA tiles arranged in rows and columns. Each file comprises a plurality of functional and interface groups and a primary routing structure, which is coupled to the functional and interface groups and is configured to receive and route primary output signals within at least one FPGA tile, and provide primary input signals to the functional and interface groups. Each functional group is configured to receive input signals, perform logic operations, and generate output signals and is configured to transfer signals from the routing structure to outside of at least one FPGA file, and includes a plurality of input multiplexers configured to select signals received from outside at least one FPGA tile and provide signals to the routing structure inside at least one FPGA tile.
摘要:
An inter-tile buffering system for a field programmable gate array (FPGA) comprising a plurality of FPGA tiles arranged in rows and columns. Each file comprises a plurality of functional and interface groups and a primary routing structure, which is coupled to the functional and interface groups and is configured to receive and route primary output signals within at least one FPGA tile, and provide primary input signals to the functional and interface groups. Each functional group is configured to receive input signals, perform logic operations, and generate output signals and is configured to transfer signals from the routing structure to outside of at least one FPGA file, and includes a plurality of input multiplexers configured to select signals received from outside at least one FPGA tile and provide signals to the routing structure inside at least one FPGA tile.
摘要:
The invention relates to an intra-tile buffering system for a field programmable gate array. The field programmable gate array comprises a field programmable gate array tile comprising a number of rows and a number of columns. Each row has a left end and a right end, and each column has a top end and a bottom end. Each row comprises a plurality of functional groups with an interface group located at said right end and said left end. Each column comprises a plurality of functional groups with an interface group located at said top end and said bottom end. A primary routing structure is coupled to said functional groups and interface groups and configured to receive primary output signals, route primary output signals within said at least one field programmable gate array tile, and provide primary input signals to said functional groups and interface groups. Each functional group is configured to receive a primary input signal, perform a logic operation, and generate a primary output signal. Each interface group is configured to transfer signals from said primary routing structure to outside of said at least one field programmable gate array tile, and includes a plurality of input multiplexers configured to select signals received from outside of said at least one field programmable gate array tile and provide signals to the primary routing structure inside said at least one field programmable gate array tile. Said primary routing structure comprises a horizontal bus coupled to each row of functional groups, a vertical bus coupled to each column of functional groups, a horizontal buffer coupled to each horizontal bus and spaced every Nth column of functional groups, where N is an integer, and a vertical buffer coupled to each horizontal bus and spaced every Mth row of functional groups, where M is an integer.
摘要:
An apparatus includes a field-programmable gate array (FPGA). The FPGA includes a first FPGA tile, and the first FPGA tile includes a plurality of functional groups (FGs), a third set of routing conductors, in addition to a first set of routing conductors and a second set of routing conductors and a plurality of interface groups (IGs). The plurality of FGs are arranged in rows and columns with each of the FGs being configured to receive tertiary input signals as well as regular input signals, perform a logic operation, and generate regular output signals. The third set of routing conductors is coupled to the first set of output ports of the FGs and configured to receive signals, route signals within the first FPGA tile, and provide input signals to the third set of input ports of the FGs. The plurality of IGs surround the plurality of FGs such that one IG is positioned at each end of each row and column. Each of the IGs is coupled to the third set of routing conductors and configured to transfer signals from the third set of routing conductors to outside of the first FPGA tile.
摘要:
An apparatus includes a field-programmable gate array (FPGA). The FPGA includes a first FPGA tile, and the first FPGA tile includes a plurality of functional groups (FGs), a regular routing structure, and a plurality of interface groups (IGs). The plurality of FGs are arranged in rows and columns with each of the FGs being configured to receive regular input signals, perform a logic operation, and generate regular output signals. The regular routing structure is coupled to the FGs and configured to receive the regular output signals, route signals within the first FPGA tile, and provide the regular input signals to the FGs. The routability of the regular routing structure is maximized by depositing switches according to designators. This novel designation method provides the same routability with approximately half the switches. Thus, further reduction in routing area is achieved. The plurality of IGs surround the plurality of FGs such that one IG is positioned at each end of each row and column. Each of the IGs is coupled to the regular routing structure and configured to transfer signals from the regular routing structure to outside of the first FPGA tile.
摘要:
An apparatus includes a field-programmable gate array (FPGA). The FPGA includes a first FPGA tile, and the first FPGA tile includes a plurality of functional groups (FGs), a regular routing structure, and a plurality of interface groups (IGs). The plurality of FGs are arranged in rows and columns with each of the FGs being configured to receive regular input signals, perform a logic operation, and generate regular output signals. The regular routing structure is coupled to the FGs and configured to receive the regular output signals, route signals within the first FPGA tile, and provide the regular input signals to the FGs. The routability of the regular routing structure is maximized by depositing switches according to designators. This novel designation method provides the same routability with approximately half the switches. Thus, further reduction in routing area is achieved. The plurality of IGs surround the plurality of FGs such that one IG is positioned at each end of each row and column. Each of the IGs is coupled to the regular routing structure and configured to transfer signals from the regular routing structure to outside of the first FPGA tile.
摘要:
The invention relates to an inter-tile buffering system for a field programmable gate array. The field programmable gate array is comprised of the following. A plurality of field programmable gate array tiles are arranged in an array of rows and columns. Each of said field programmable gate array tiles comprises a plurality of functional groups and a plurality of interface groups, and a primary routing structure. The primary routing structure is coupled to said functional groups and interface groups and is configured to receive primary output signals, route primary output signals within said at least one field programmable gate array tile, and provide primary input signals to said functional groups and interface groups. Each functional group is configured to receive primary input signals, perform a logic operation, and generate primary output signals. Each interface group is configured to transfer signals from said primary routing structure to outside of said at least one field programmable gate array tile, and includes a plurality of input multiplexers configured to select signals received from outside of said at least one field programmable gate array tile and provide signals to the primary routing structure inside said at least one field programmable gate array tile. Said primary routing structure comprises a horizontal bus and a vertical bus. A horizontal buffer is located between each column of field programmable gate array tiles and is coupled to the primary routing structure. A vertical buffer is located between each row of field programmable gate array tiles and is coupled to the primary routing structure.
摘要:
An apparatus includes a field-programmable gate array (FPGA). The FPGA includes a first FPGA tile, and the first FPGA tile includes a plurality of functional groups (FGs), a third set of routing conductors, in addition to a first set of routing conductors and a second set of routing conductors and a plurality of interface groups (IGs). The plurality of FGs are arranged in rows and columns with each of the FGs being configured to receive tertiary input signals as well as regular input signals, perform a logic operation, and generate regular output signals. The third set of routing conductors is coupled to the first set of output ports of the FGs and configured to receive signals, route signals within the first FPGA tile, and provide input signals to the third set of input ports of the FGs. The plurality of IGs surround the plurality of FGs such that one IG is positioned at each end of each row and column. Each of the IGs is coupled to the third set of routing conductors and configured to transfer signals from the third set of routing conductors to outside of the first FPGA tile.
摘要:
A field-programmable gate array (FPGA), comprising: a first FPGA tile, the first FPGA tile comprising a plurality of functional groups (FGs), a regular routing structure, and a plurality of interface groups (IGs). The plurality of FGs are arranged in rows and columns with each of the FGs being configured to receive regular input signals, perform a logic operation, and generate regular output signals. The regular routing structure is coupled to the FGs and configured to receive the regular output signals, route signals within the first FPGA tile, and provide the regular input signals to the FGs. The plurality of IGs surround the plurality of FGs such that one IG is positioned at each end of each row and column. Each of the IGs is coupled to the regular routing structure and configured to transfer signals from the regular routing structure to outside of the first FPGA tile. The first FPGA tile also comprising a secondary routing structure independent of the regular routing structure, coupled to each of the IGs, configured to transfer signals from said first FPGA tile to at least one other FPGA tile. The disclosed apparatus also provides for a routing structure between IGs and RAM blocks. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understand that it will not be used to interpret or limit the scope or meaning of the claims.