摘要:
An optical element of the present invention exhibits at least one of an upconversion emission characteristic and a light amplifying characteristic when irradiated with an excitation light. The optical element includes a bulk glass that contains titanium oxide as a main component, and the glass further contains a rare earth element. As the rare earth element, at least one element of Er and Yb, or a combination of Yb and Tm preferably is used, for example.
摘要:
A titanium-containing oxide glass having a bulky form and substantially having a chemical composition represented by the formula: (M1)1-x(M2)x(Ti1-y1(M3)y1)y2O2 [wherein M1 represents an element selected from Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Na and Ca; M2 represents at least one element selected from Mg, Ba, Ca, Sr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Na, Sc, Y, Hf, Bi and Ag; M3 represents at least one element selected from V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Al, Si, P, Ga, Ge, In, Sn, Sb and Te; and x, y1, y2 and z satisfy the following requirements: 0≦x≦0.5, 0≦y1
摘要:
A titanium-containing oxide glass having a bulky form and substantially having a chemical composition represented by the formula: (M1)1-x(M2)x(Ti1-y1(M3)y1)y2Oz [wherein M1 represents an element selected from Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Na and Ca; M2 represents at least one element selected from Mg, Ba, Ca, Sr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Na, Sc, Y, Hf, Bi and Ag; M3 represents at least one element selected from V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Al, Si, P, Ga, Ge, In, Sn, Sb and Te; and x, y1, y2 and z satisfy the following requirements: 0≦x≦0.5, 0≦y1
摘要:
A titanium-containing oxide glass having a bulky form and substantially having a chemical composition represented by the formula: (M1)1-x(M2)x(Ti1-y1(M3)y1)y2Oz [wherein M1 represents an element selected from Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Na and Ca; M2 represents at least one element selected from Mg, Ba, Ca, Sr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Na, Sc, Y, Hf, Bi and Ag; M3 represents at least one element selected from V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Al, Si, P, Ga, Ge, In, Sn, Sb and Te; and x, y1, y2 and z satisfy the following requirements: 0≦x≦0.5, 0≦y1
摘要:
Disclosed is a method of producing a barium-titanium-based ferroelectric glass using a containerless solidification process, such as an electrostatic levitation process or a gas levitation process, which comprises the steps of levitating a sample 1 of a barium-titanium-based compound by a levitating force of compressed air, heating the sample up to a temperature greater than its melting point (1330° C.) by about 100° C. to allow the sample to be molten, and, after maintaining the molten state for a given time period (at least several second), quenching the sample from a given temperature range (1400 to 1000° C.) at a cooling rate of about 103 K/sec, so as to allow the sample to be solidified while inhibiting nucleation and mixing of impurities from a container. The present invention makes it possible to provide a glass exhibiting an unprecedented, extremely large permittivity.
摘要:
Disclosed is a method of producing a barium-titanium-based ferroelectric glass using a containerless solidification process, such as an electrostatic levitation process or a gas levitation process, which comprises the steps of levitating a sample 1 of a barium-titanium-based compound by a levitating force of compressed air, heating the sample up to a temperature greater than its melting point (1330° C.) by about 100° C. to allow the sample to be molten, and, after maintaining the molten state for a given time period (at least several second), quenching the sample from a given temperature range (1400 to 1000° C.) at a cooling rate of about 103 K/sec, so as to allow the sample to be solidified while inhibiting nucleation and mixing of impurities from a container. The present invention makes it possible to provide a glass exhibiting an unprecedented, extremely large permittivity.
摘要翻译:公开了使用诸如静电悬浮法或气体悬浮法的无容器凝固方法制备钡钛基铁电玻璃的方法,其包括以下步骤:将钡钛基化合物的样品1悬浮在 压缩空气的悬浮力,将样品加热至高于其熔点(1330℃)的温度约100℃,以使样品熔融,并且在将熔融状态保持给定时间之后 (至少几秒钟),以约10 3 K /秒的冷却速率将样品从给定温度范围(1400至1000℃)淬火,以使样品 同时抑制来自容器的杂质的成核和混合。 本发明使得可以提供呈现前所未有的极大介电常数的玻璃。